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Machine learning is concerned with the design and
development of algorithms that allow computers (machines) to
improve their performance over time based on data.
o learning from past experience (training data) Definition

o generalisation
e quantify ‘learning’: improve their performance over time
e need to quantify ‘performance’
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Definition
Machine learning is concerned with the design and
development of algorithms that allow computers (machines) to
improve their performance over time based on data.
v
o learning from past experience (training data) Definition

o generalisation
e quantify ‘learning’: improve their performance over time
e need to quantify ‘performance’

Definition (Mitchell, 1998)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves
with experience E.
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Why Machine Learning?

Machine Learning is essential when
e humans are unable to explain their expertise (e.g. speech
recognition).
e humans are not around for help (e.g. navigation on Mars,
underwater robotics).

o large amount of data with possible hidden relationships
and correlations (empirical sciences, e.g. discover unusual
astronomical objects).

e environment changes (fast) in time (e.g. mobile phone
network).

e solutions need to be adapted to many particular cases
(e.g. junk mail).

Example: It is easier to write a program that learns to play
checkers or backgammon well by self-play rather than
converting the expertise of a master player to a program.

Introduction to Statistical
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Definition
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o Given examples of data (mail), and targets {Junk,NoJunk}.

o Learn to identify new incoming mail as Junk or NoJunk.
o Continue to learn from the user classifying new mail.




Handwritten Digit Recognition

o Given handwritten ZIP codes on letters, money amounts

on cheques etc.

o

/

2
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Y

S

&

5

&

&

e Learn to correctly recognise new handwritten digits.
o Nonsense input: “Don’t know” preferred to some wrong

digit.
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Examples of Machine
Learning
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o World best computer program TD-GAMMON (Tesauro
1992, 1995) played over a million games against itself.

o Plays now on the level of human world champion.




Original image Noise added Denoised

o McAuley et. al., "Learning High-Order MRF Priors of Color
Images", ICML2006




Cocktail Party Problem (human brains may do it differently ;)

Audio Sources Microphones Audio Mixtures

i — P
Wbt — i




e autonomous robotics,

o detecting credit card fraud,
o detecting network intrusion,
o bioinformatics,
neuroscience,

medical diagnosis,

o
o
o stock market analysis,
o




o Artificial Intelligence - Al

o Statistics

o Game Theory

o Neuroscience, Psychology
o Data Mining

o Computer Science

o Adaptive Control Theory




Fundamental Types of Learning

Unsupervised Learning
o Association
o Clustering
o Density Estimation

e Blind source
separation

Supervised Learning
o Regression
o Classification

Reinforcement Learning
o Agents

Others
e Active Learning
e SemiSupervised
Learning

o Transductive
Learning

Introduction to Statistical
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Fundamental Types of
Learning
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o Only input data given, no targets (labels).
o Goal: Determine how the data are organised.




o Clustering : Group similar instances

o Example applications
o Clustering customers in
Customer-Relationship-Management
o Image compression: color quantisation




Supervised Learning

o Given pairs of data and targets (=labels).
e Learn a mapping from the data to the targets (training).

o Goal: Use the learned mapping to correctly predict the
target for new input data.

o Need to generalise well from the training data/target pairs.
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Fundamental Types of
Learning

240 183



Reinforcement Learning

(]

(]

(4]

(4]

(]

Example: Game playing. There is one reward at the end of
the game (negative or positive).

Find suitable actions in a given environment with the goal
of maximising some reward.

correct input/output pairs never presented

Reward might only come after many actions.

Current action may not only influence the current reward,
but future rewards too.
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Fundamental Types of
Learning
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Reinforcement Learning

observation: — reward.
receive
reward

observation: r reward:

receive
reward

Agent Agent

choose action choose action

action -----eoeeeeeed actionz ----ceeeeeeeeenn :

o Exploration versus Exploitation.
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observationi — reward:
receive A
reward

Agent

choose action

actioni «--ceceeeeenest

Fundamental Types of
Learning

o Well suited for problems with a long-term versus

short-term reward trade-off.

o Naturally focusing on online performance.
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Basic Probability Theory

Probability

is a way of expressing knowledge or belief that an event will
occur or has occurred.

Example: Fair Six-Sided Die

Sample space Q={1,2,3,4,5,6}

Events Even = {2,4,6}, Odd = {1,3,5}
Probability P(3) =}, P(0dd) = P(Even) = }
Outcome 3€eQ)

Conditional Probability P(3] 0dd) = 2000 — 178 =

General Axioms
o P{})=0<PA)<P(O) =1,
e P(AUB) +P(ANB) = P(A) + P(B),
e P(ANB) = P(A|B)P(B).
Rules of Probability
e Sumrule: P(X) =), P(X,Y)
e Product rule: P(X,Y) = P(X|Y) P(Y)
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Probability Jargon

(Un)fair Coin: Q = {Tail = 0,Head = 1} . P(1) =6 € [0, 1].

Likelihood P(1101|0) =6 x 6 x (1 —0) x 6

Maximum Likelihood (ML) estimate 6 = arg max, P(1101 | §) = 2
Prior If we are indifferent, then P(6) = const.

Evidence P(1101) = >, P(1101|6)P(6) = 5; (actually [)

Posterior P(6|1101) = W x 63(1 — 0) (Bayes Rule)

Maximum a Posterior (MAP) estimate § = argmax, P(6|1101) = %
Predictive Distribution P(1|1101) = 501 = 2

Expectation E[f | ...] =3, f(O)P(@] ...),eg. E[#|1101] = 3
Variance var() =E [(0 — E [6])*|1101] = &

Probability Density P(6) = 1P([0,0 + €]) for e — 0
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o some artificial data created from the function

sin(2mx) 4+ random noise ~ x=0,...,1




N =10

X = (x1,...,Xn)
t=(tr,...,t5)"
xe€R i=1,...,N
teR i=1,...,N

T




M : order of polynomial

}’(an)=wo+w1x+w2x2+...+waM

M
= Z Wi X"
m=0

o nonlinear function of x
o linear function of the unknown model parameter w
e How can we find good parameters w = (wy, ..., wy)"?




o Performance measure : Error between target and
prediction of the model for the training data

1 N
52_: -xna n

e unique minimum of E(w) for argument w*




y(x,w) = Zwmx'"
m=0 M=0
= WO
M=
)
o o0
7 o ©
o




YEW) =D

m=0 M=1
=Wy +wix




m=0 M=3
= wy +w1x—|-sz2 +W3x3




M

y(x,w) = Zwmxm
m=0 M=9

=wo+wix+ -+ wgx® +wox’

o overfitting




o Train the model and get w*
o Get 100 new data points
o Root-mean-square (RMS) error

ERMS =V 2E(W*)/N

—©6— Training
—6— Test




Parameters of the Fitted Model

M=0| M= M=3 M=9
w 0.19 | 0.82 0.31 0.35
wy -1.27 7.99 232.37
W} -25.43 -5321.83
w3 17.37 48568.31
wj -231639.30
wi 640042.26
w§ -1061800.52
w3 1042400.18
wg -557682.99
wg 125201.43

Table: Coefficients w* for polynomials of various order.
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Polynomial Curve Fitting
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e N=15




Get Even More Data

o N =100

o heuristics : have no less than 5 to 10 times as many data
points than parameters

e but number of parameters is not necessarily the most
appropriate measure of model complexity !

o later: Bayesian approach

Introduction to Statistical
Machine Learning
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Polynomial Curve Fitting
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o How to constrain the growing of the coefficients w ?
o Add a regularisation term to the error function

N
1 A
)=2 2 0w =)+ FIwl?
o Squared norm of the parameter vector w

[Wl* = w'w=wg +wi+-- +wy




oM




oM

-1t

[¢)

InA=0




oM

Training

Test

-35

=30 1.

-25
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o input "feature"” vector x = (1 = x© x( . xP)T ¢ RP+!
o linear regression model

D
y(x,w) = Z wix¥) = wix
=0

e model parameter w = (wy, ..., wp)! where wy is the bias

X2 v
15

30

Hyperplanes for w = {(2,1,-1),(5,2,1),(10,2,2)}
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Linear Regression - Finding the Best Model S
Chrisged Webers
o Use training data (X], ll), ey (XN, IN) TheAu.nIrv;E;?Nmmnal
e and loss function (performance measure) to find best w. feny
o Example : Residual sum of squares
N
Loss(w) = Z(tn — (X, W))2
n=1 Linear Basis Function

Models

o Least square regression

W = arg min Loss(w)
w
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o Linear combination of fixed nonlinear basis functions
¢j(X) eR

S

y(x,w) = - wid;(x) = w’ ¢(x)

~.
Il
=)

o parameter w = (wy, ..., wy—1)7,

@ wy is the bias parameter,

e basis functions ¢ = (¢, ..., ou—1)"
e convention ¢y(x) = 1
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Polynomial Basis Functions S
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e Scalar input variable x N
University
oj(x) = ¥
o Limitation : Polynomials are global functions of the input
variable x.
o Extension: Split the input space into regions and fit a e B Fameton
different polynomial to each region (spline functions). Mty
1
0.5
0
-0.5
-1t
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o Scalar input variable x
(=)
o0 = exp{ -1

o Not a probability distribution.
o No normalisation required, taken care of by the model
parameters w.

0.75

0.5

0.25




o Scalar input variable x

where o(a) is the logistic sigmoid function defined by

1
o(a) = 1 + exp(—a)

e o(a) is related to the hyperbolic tangent tanh(a) by
tanh(a) = 20(a) — 1.

1l

1 0 1

[N

0.7

a1

0.

[

0.2

[$)]

[N =)



Symmlet-8 Wavelets

1
¥
il
I
VnV
o Wavelets : localised in s
both space and VI\V
frequency vAv
e mutually orthogonal to M-
simplify application. A N
\/ A
S\
AN




Splines: polynomials restricted to regions of the input space

A
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o No special assumption about the basis functions ¢;(x). In
the simplest case, one can think of ¢;(x) = x;.

o Assume target ¢ is given by
Maximum Likelihood and

= Least Squares
t= y(x,w) +_e¢

deterministic ~ Noise

where ¢ is a zero-mean Gaussian random variable with
precision (inverse variance) .
e Thus
pt|x,w.8) = N(t]y(x,w), 57"
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o Likelihood of one target r given the data x

P(I|X7W,ﬂ) :N(t|y(wi)vﬁ71)

o Set of inputs X = {xy,...,xy} with corresponding target
values t = (11,...,1,).

o Assume data are independent and identically distributed
(i.i.d.) (means : data are drawn independent and from the
same distribution). The likelihood of the target t is then

Maximum Likelihood and
Least Squares

N (tn | y(xa, W), 571)

=

p(t[X,w,p) =

n=1

Nt | W p(x,), 57

Il
=

1

3
I
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o Consider the logarithm of the likelihood p(t| X, w, 8) (the Hia
logarithm is a monoton function!)

InN (1, | W' (x,), 87"

W ﬁ ’ 5 Maximum Likelihood and
1 A it —w X Least Squares
’ n 2 T eXp { 2 ( n d)( n)) }

lnﬂ - = 1n(27r) BEp(w)

NE

Inp(t|X,w,[) =
1

3
I

I
M=

3
Il

where the sum-of-squares error function is

Z{tn )}

o argmax,, Inp(t|X, w, 3) — argmin,, Ep(w)
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o Rewrite the Error Function R sttt
1 & 1
Ep(w) = 5 Zl{;n —wp(x,)} = S(t= ow) (t— ®w)
n—=
where t = (11,...,ty)7, and
do(x1)  d1(x1) ... dm—1(x1) Maximum Likelihood and

do(x2)  P1(x2) ... du-i1(x2) fest s

do(xn)  d1(xn) ... du—1(xn)
e Maximum likelihood estimate
wy = argmax Inp(t|w, 3) = argmin Ep(w)
w w
= (®"®) 't =2t

where &' is the Moore-Penrose pseudo-inverse of ®.
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o Add regularisation in order to prevent overfitting
Ep(w) + AEw(w)

with regularisation coefficient A.
o Simple quadratic regulariser

1
Ew(w) = EWTW

o Maximum likelihood solution

wa, = (M + ®7®) ' 3"t




o More general regulariser
1 M
) Z wjl?

o g =1 (lasso) leads to a sparse model if A large enough.




Assume a sufficiently large regularisation coefficient A.

Quadratic regulariser Lasso regulariser
e e
2
52 5 2w
j=1 j=1

wa w2
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o Bayes Theorem

likelihood x prior

osterior = —
P normalisation p)
o likelihood for i.i.d. data
N
P(tl ZHNIn‘an, )aﬂ_l)
n=1 Bayesian Regression

N

H (ta | W' p(x,), B7)

= const x exp{—ﬂi(t —ow) (t— dw)}

where we left out the conditioning on x (always assumed),
and 3, which is assumed to be constant.
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How to choose a prior?

e Can we find a prior for the given likelihood which
o makes sense for the problem at hand
o allows us to find a posterior in a ‘nice’ form

An answer to the second question:

Definition ( Conjugate Prior)

A class of prior probability distributions p(w) is conjugate to a
class of likelihood functions p(x | w) if the resulting posterior
distributions p(w | x) are in the same family as p(w).

Introduction to Statistical
Machine Learning
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Bayesian Regression
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Examples of Conjugate Prior Distributions

Table: Discrete likelihood distributions

Likelihood | Conjugate Prior
Bernoulli Beta
Binomial Beta
Poisson Gamma

Multinomial Dirichlet

Table: Continuous likelihood distributions

Likelihood Conjugate Prior
Uniform Pareto
Exponential Gamma
Normal Normal

Multivariate normal

Multivariate normal

Introduction to Statistical
Machine Learning
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Bayesian Regression
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likelihood prior/posterior

p(w)
o No data point
(N = 0): start with
prior.
o Each posterior acts Bayes
as the prior for the plti 1w, x1) ————>pW It x1)
next data/target pair.

o Nicely fits a
sequential learning
framework.
p(t2 | w, x2) _Ba&» p(wl b, xute, Xe)




Sequential Update of the Posterior

Example of a linear (basis function) model
Single input x, single output ¢

Linear model y(x, w) = wg + wx.

Data creation

@ Choose an x, from the uniform distribution ¢/ (x| — 1, 1).
Q@ Calculate f(x,,a) = ao + aix,, where ap = —0.3, a; = 0.5.
@ Add Gaussian noise with standard deviation o = 0.2,

e 6 o o

tn = N (xn | f (%, 2),0.04)

o Set the precision of the uniform prior to oo = 2.0.

Introduction to Statistical
Machine Learning
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Example for Bayesian
Regression
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Definition (The Predictive Distribution)

The Predictive Distribution is the probability of the test target ¢
given test data x, the training data set X and the training
targets t.

p(t]x,X,1)

o How to calculate the Predictive Distribution?

p(t]x,X,t) = /p(t,w|x,X,t) dw (sum rule)

= /p(l‘ [w,x, X, 1) p(w|x,X,t) dw Predictive Distribution

testing only training only

:/p(t|w,x)p(w|X,t) dw
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o (Simplified) isotropic Gaussian prior
p(wla)=N(w|0,a™'T)

o Predictive distribution p(#| x, X, t) is Gaussian, variance
after N data points have been seen

oy (x) = +¢'(ad+527®) ¢

uncertainty of w

(-

noise of data

0 0341 (x) < o} (x) and limyo0 o3 (x) = §
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1 1
t t
0 0 AM
-1 -1
0 . 1 0 . 1
5 O
1 1 O8O0
t t g ©
o
0 4\\ \s_/o 0 Predictive Distribution
-1 -1
0 z 1 0 x 1

Example with artificial sinusoidal data from sin(27x) (green) and
added noise. Mean of the predictive distribution (red) and regions of
one standard deviation from mean (red shaded). A



-1 -1

o
=
o
=

0 1 0 1

@ @

Example with artificial sinusoidal data from sin(27x) (green) and added
noise. Samples y(x, w) (red) from the posterior distribution p(w | X, t) .




Limitations of Linear Basis Function Models

e Basis function ¢;(x) are fixed before the training data set is
observed.

o Curse of dimensionality : Number of basis function grows
rapidly, often exponentially, with the dimensionality D.

o But typical data sets have two nice properties which can
be exploited if the basis functions are not fixed :

o Data lie close to a nonlinear manifold with intrinsic
dimension much smaller than D. Need algorithms which
place basis functions only where data are (e.g. radial basis
function networks, support vector machines, relevance
vector machines, neural networks).

o Target variables may only depend on a few significant
directions within the data manifold. Need algorithms which
can exploit this property (Neural networks).

Introduction to Statistical
Machine Learning
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Limitations of Linear
Basis Function Models
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Curse of Dimensionality

o Linear Algebra allows us to operate in n-dimensional
vector spaces using the intution from our 3-dimensional
world as a vector space. No surprises as long as r is finite.

o If we add more structure to a vector space (e.g. inner

product, metric), our intution gained from the

3-dimensional world around us may be wrong.

o Example: Sphere of radius r = 1. What is the fraction of
the volume of the sphere in a D-dimensional space which

lies betweenradiusr=1andr=1—¢€¢?

o Volume scales like 2, therefore the formula for the volume

of a sphere is Vp(r) = KprP.

VD(I) — VD(I — 6)

V(1)

1—(1—¢)P

Introduction to Statistical
Machine Learning
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Limitations of Linear
Basis Function Models
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o Fraction of the volume of the sphere in a D-dimensional
space which lies betweenradius r=1landr=1—¢

=1—(1—¢)P
Vp(1) ( )
1
D =20

0.8 D=5
c D=2
s
§ 0.6 4
S
£
% 0.4
>

0.2

0




o Probability density with respect to radius r of a Gaussian
distribution for various values of the dimensionality D.




Curse of Dimensionality

o Probability density with respect to radius r of a Gaussian
distribution for various values of the dimensionality D.

o Example: D =2;assume un=0,2=1

1 1 _ b
N(x]0,1) = 7Texp{x x} =3

o Coordinate transformation

x; = rcos(¢)

1

™

1
exp {303+ |

X, = rsin(9)

o Probability in the new coordinates

p(r;#10,1) = N(r(x), 6(x) |0, 1) | /|

where | J | = r is the determinant of the Jacobian for the

given coordinate transformation.

p(r,#]0,1) =

1
3.7 exp

{

,Er

)
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Limitations of Linear
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o Probability density with respect to radius r of a Gaussian
distribution for D=2 (and 1 =0,%X =)

1
prol00) = resp{ -3}
o Integrate over all angles ¢

271' 1
p<r|o,1>=/0

27

rexp {—%rz} d¢ = rexp {—%rz}
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o Goal : Given input data x, assign it to one of K discrete
classes C, where k=1,...,K.

o Divide the input space into different regions.




How to represent binary class labels?

o Class labels are no longer real values as in regression, but
a discrete set.

o Two classes : 7 € {0,1}
(t = 1represents class C, and t = 0 represents class C,)

o Can interpret the value of r as the probability of class C,,
with only two values possible for the probability, O or 1.

o Note: Other conventions to map classes into integers
possible, check the setup.

Introduction to Statistical
Machine Learning
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Classification
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How to represent multi-class labels?

o If there are more than two classes ( K > 2), we call it a
multi-class setup.

e Often used: 1-of-K coding scheme in which t is a vector of
length K which has all values 0 except for ¢; = 1, where j
comes from the membership in class C; to encode.

o Example: Given 5 classes, {Ci,...,Cs}. Membership in
class C, will be encoded as the target vector

t=(0,1,0,0,0)"

o Note: Other conventions to map multi-classes into integers
possible, check the setup.

Introduction to Statistical
Machine Learning
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Classification
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o Idea: Use again a Linear Model as in regression: y(x, w) is Wit
a linear function of the parameters w

V(Xn, W) = WT¢(Xn)

o But generally y(x,,w) € R.
Example: Which class is y(x, w) = 0.71623 ? Generalised Linear

Model
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o Apply a mapping f : R — Z to the linear model to get the
discrete class labels.

o Generalised Linear Model

(%, W) = f(W p(x,))

o Activation function: f(-)
o Link function : f~'(-)

sonie)
10

05|

05|

Figure: Example of an activation function f(z) = sign (z) .




Three Models for Decision Problems

In increasing order of complexity

e Find a discriminant function f(x) which maps each input
directly onto a class label.

o Discriminative Models

@ Solve the inference problem of determining the posterior
class probabilities p(Cy | x).

@ Use decision theory to assign each new x to one of the
classes.

o Generative Models

@ Solve the inference problem of determining the
class-conditional probabilities p(x | C).

@ Also, infer the prior class probabilities p(Cx).

@ Use Bayes’ theorem to find the posterior p(Cx | x).

@ Alternatively, model the joint distribution p(x, Cx) directly.

@ Use decision theory to assign each new x to one of the
classes.

Introduction to Statistical
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Inference and Decision
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o probability of a mistake
p(mistake) = p(x € R1,C2) +p(x € Ro,Ch)
= / p(X, Cz) dx +/ p(X, Cl) dx
R

R

o goal: minimize p(mistake)

Zo z

p(z,C1)




Minimising the Expected Loss

o Not all mistakes are equally costly.

o Weight each misclassification of x to the wrong class C;
instead of assigning it to the correct class C; by a factor L.

o The expected loss is now
EL =YY / Li; p(x,Cy)dx
koj IR

o Goal: minimize the expected loss E [L]
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o Avoid making automated decisions on difficult cases.
o Difficult cases:

o posterior probabilities p(Cy | x) are very small
o joint distributions p(x, Cx) have comparable values

1.0
0

0.0

-—
reject region




Least Squares for Classification

(]

6 6 o o

Regression with a linear function of the model parameters
and minimisation of sum-of-squares error function resulted
in a closed-from solution for the parameter values.

Is this also possible for classification?

Given input data x belonging to one of K classes C;.

Use 1-of-K binary coding scheme.

Each class is described by its own linear model

(%) = WZX + Wio

k=1,...

K
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o With the conventions

Wy = [Wko] € RPH!
Wi
< [1] c RD+!
X
W = [W] o VVK] S R(D+1)XK

o we get for the discriminant function (vector valued)
y(x) = W' e RX,

o For a new input x, the class is then defined by the index of
the largest value in the row vector y(x)




Determine W

e Given a training set {x,,t} wheren=1,...,N, and t is the
class in the 1-of-K coding scheme.

o Define a matrix T where row n corresponds to t?.
o The sum-of-squares error can now be written as

~ 1 -~ -~
Ep(W) = - tr {(Xw — T (XW — T)}
2
o The minimum of E,(W) will be reached for
W= (X"X)"'X'T = X'T

where X' is the pseudo-inverse of X.
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Discriminant Function for Multi-Class

e The discriminant function y(x) is therefore
¥(x) = WX =T(X')'5,

where X is given by the training data, and X is the new
input.

o Interesting property: If for every t, the same linear
constraint a’t, + b = 0 holds, then the prediction y(x) will
also obey the same constraint

a’y(x)+b=0.

e For the 1-of-K coding scheme, the sum of all components
in t, is one, and therefore all components of y(x) will sum
to one. BUT: the components are not probabilities, as they
are not constraint to the interval (0, 1).
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Deficiencies of the Least Squares Approach

Magenta curve : Decision Boundary for the least squares
approach ( Green curve : Decision boundary for the logistic
regression model described later)

4

X
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Magenta curve : Decision Boundary for the least squares
approach ( Green curve : Decision boundary for the logistic
regression model described later)
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Fisher’s Linear Discriminant

o View linear classification as dimensionality reduction.
y(x) = w'x

If y > —wy then class C;, otherwise C,.

e But there are many projections from a D-dimensional input
space onto one dimension.

o Projection always means loss of information.

o For classification we want to preserve the class separation
in one dimension.

e Can we find a projection which maximally preserves the
class separation ?

Introduction to Statistical
Machine Learning

©2010
Christfried Webers
NICTA
The Australian National
University

Fisher’s Linear
Discriminant

940f 183



Introduction to Statistical
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Samples from two classes in a two-dimensional input space
and their histogram when projected to two different
one-dimensional spaces.

Fisher’s Linear
Discriminant

o
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Fisher’s Linear Discriminant - First Try acine Learning
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o Given N input data of class C;, and N, input data of class The Australian National
University
C,, calculate the centres of the two classes ’
-y 3
m = — X, m = — X,
1 Nl ny 2 N2 n
nec; neC,
o Choose w so as to maximise the projection of the class
means onto w
T
my —np =w (m; —m)
@ Problem with non-uniform covariance oo
Discriminant

4

=)
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o Measure also the within-class variance for each class
2 2
Sk = Z(yn — my)
neCy

where y, = w'x,,.
o Maximise the Fisher criterion

(my —my)?
s% + s%

J(w) =




o The Fisher criterion can be rewritten as

w!Szw

wl'Syw

J(w) =
o Sp is the between-class covariance

Sp = (my —m;)(m, — ml)T

o Sy is the within-class covariance

Sw=Z(X —m)(x, —my) +Z n — )

neC, neCy

_ mz)T




o The Fisher criterion

w!Spw
wl'Syw

J(w)
has a maximum for Fisher’s linear discriminant
W X S‘,_Vl(mz —my)

o Fisher’s linear discriminant is NOT a discriminant, but can
be used to construct one by choosing a threshold y, in the
projection space.




The Perceptron Algorithm

o Perceptron ("MARK 1", Cornell Univ., 1960) was the first
computer which could learn new skills by trial and error
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Fisher’s Linear
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The Perceptron
Algorithm
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o Frank Rosenblatt (1928 - 1969)

o "Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms" (Spartan Books, 1962)
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The Perceptron Algorithm S
2010
Chris')jC;?iezl Webers
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The Australian National

o Two class model University

o Create feature vector ¢(x) by a fixed nonlinear
transformation of the input x.

o Generalised linear model

with ¢(x) containing some bias element ¢ (x) = 1.
e nonlinear activation function

+1, a>0 The Perceptron
f(a) = Algorithm
-1, a<0

o Target coding for perceptron

D £ 2 ¢
S P
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The Perceptron Algorithm - Error Function

o |dea : Minimise total number of misclassified patterns.

o Problem : As a function of w, this is piecewise constant
and therefore the gradient is zero almost everywhere.

o Better idea: Using the (—1, +1) target coding scheme, we
want all patterns to satisfy w’ ¢(x,)t, > 0.

o Perceptron Criterion : Add the errors for all patterns
belonging to the set of misclassified patterns M

Ep(w) = — Z w p(x,)t,

neM
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o Perceptron Criterion (with notation ¢, = ¢(x,) )

Ep(w) = Z wl ¢, t,
nemM
o One iteration at step 7
@ Choose a training pair (X, t,)
@ Update the weight vector w by
wTth = w(r —nVEp(w) = w4 NP, ta

o As y(x,w) does not depend on the norm of w, one can set
n=1
w(T‘H) = W(T) + ¢ntn




Update of the perceptron weights from a misclassified pattern
(green)

0.5




Update of the perceptron weights from a misclassified pattern
(green)

° ° .
. .
o \® .
0.5 0.5
0 0
Q]
-0.5] L4 -0.5
.
o -1




The Perceptron Algorithm - Convergence

o Does the algorithm converge ?
o For a single update step

—W(T+1)T¢ntn — _W(T)T¢ntn _ (¢nln)T¢nt" < —W(T)T¢ntn

because (¢,1,)  @,t, = ||P,ta]| > 0.

e BUT: contributions to the error from the other misclassified
patterns might have increased.

o AND: some correctly classified patterns might now be
misclassified.

o Perceptron Convergence Theorem : If the training set is

linearly separable, the perceptron algorithm is guaranteed
to find a solution in a finite number of steps.
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Three Models for Decision Problems

In increasing order of complexity

e Find a discriminant function f(x) which maps each input
directly onto a class label.

o Discriminative Models

@ Solve the inference problem of determining the posterior
class probabilities p(Cy | x).

@ Use decision theory to assign each new x to one of the
classes.

o Generative Models

@ Solve the inference problem of determining the
class-conditional probabilities p(x | C).

@ Also, infer the prior class probabilities p(Cx).

@ Use Bayes’ theorem to find the posterior p(Cx | x).

@ Alternatively, model the joint distribution p(x, Cx) directly.

@ Use decision theory to assign each new x to one of the
classes.
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Probabilistic Generative Models

o Generative approach: model class-conditional densities
p(x|Cy) and priors p(Cy) to calculate the posterior

probability for class C;

p(Ci[x

where a and the logistic sigmoid function o (a) are given by

p(x[C)p(C1) _ | P Ci)

a(x)

p(x[C)p(C1)

)= XCIP(C) + p(x| CIp(C)

1

" 1+ exp(—a(x))

= o(a(x))

=In

p(x[C2) p(C2)

p(X, CZ)
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Logistic Sigmoid

e The logistic sigmoid function o(a) =

e "squashing function’ because it maps the real axis into a
finite interval (0, 1)

0 o(—a)=1-0(a)

1
1+exp(—a)

o Derivative Lo (a) = o(a) o(—a) = o(a) (1 — o(a))

e Inverse is called logit function a(c) = In (—)

@

08}

06

-10

5

Logistic Sigmoid o (a)

5

10

o
l—0o

02

0.6

Logit a(o)

08
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o The normalised exponential is given by

_ p(x[Cp(C)  exp(a)
PN = S RIGIP(G) ~ 5 exn@)

where
ar = In(p(x| Cx) p(C))-
o Also called softmax function as it is a smoothed version of
the max function.

o Example: If a; > q; for all j # k, then p(Ci | x) ~ 1, and
p(Ci| %) ~ 0.




o If each class-conditional probability is Gaussian and has a
different covariance, the quadratic terms —%XTE_IX do no
longer cancel each other out.

o We get a quadratic discriminant.

.5¢
-+ (D
-15




Discrete Features - Naive Bayes

o Assume the input space consists of discrete features, in

the simplest case x; € {0, 1}.

e For a D-dimensional input space, a general distribution
would be represented by a table with 2? entries.

o Together with the normalisation constraint, this are 2° —
independent variables.

o Grows exponentially with the number of features.

o The Naive Bayes assumption is that all features
conditioned on the class C; are independent of each other.

X‘Ck

H

(1 — )

1

—Xi

1
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o With the naive Bayes

(x|C) = H:u'k(l — )
o we can then again find the factors g, in the normalised

exponential

p(x|Cp(C) __explar)
>p(x[Cp(C;) > explay)

e as a linear function of the x;

p(C|x) =

D

ax(x) = Z{xi In i 4 (1 = xi) In(1 — puge) } + Inp(C).




Three Models for Decision Problems

In increasing order of complexity

e Find a discriminant function f(x) which maps each input
directly onto a class label.

o Discriminative Models

@ Solve the inference problem of determining the posterior
class probabilities p(Cy | x).

@ Use decision theory to assign each new x to one of the
classes.

o Generative Models

@ Solve the inference problem of determining the
class-conditional probabilities p(x | C).

@ Also, infer the prior class probabilities p(Cx).

@ Use Bayes’ theorem to find the posterior p(Cx | x).

@ Alternatively, model the joint distribution p(x, Cx) directly.

@ Use decision theory to assign each new x to one of the
classes.
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Logistic Regression is Classification

o Two classes where the posterior of class C; is a logistic
sigmoid () acting on a linear function of the feature vector
¢

p(Ci|¢) =y(¢) = o(w'®)

° p(C2|p)=1-p(Ci| @)

e Model dimension is equal to dimension of the feature
space M.

o Compare this to fitting two Gaussians

2M, + M(M +1)/2 = M(M +5)/2

means  shared covariance

o For larger M, the logistic regression model has a clear
advantage.
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Logistic Regression is Classification actine e
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o Determine the parameter via maximum likelihood for data
(¢y,t:),n=1,...,N, where ¢, = ¢(x,). The class
membership is coded as ¢, € {0, 1}.

o Likelihood function

N
pt|w) =1 —y)' "
n=1

where y, = p(Ci | ¢,).

e Error function : negative log likelihood resulting in the
cross-entropy error function

E(W) lnp Z {tn In Vu + 1 _ tn) 1n( 1 — )’n)} Logistic Regression
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Logistic Regression is Classification

o Error function (cross-entropy error )

N

E(w) ==Y {tyIny, + (1 —t,)In(1 = y,)}
n=1
@ Yn :p(cl ‘ ¢n) = U(WT¢n)
o Gradient of the error function (using fi—‘; =o(l—0))

N

VEW) = (v — )9,
n=1
e gradient does not contain any sigmoid function

o for each data point error is product of deviation y, — ¢, and
basis function ¢,,.
o BUT : maximum likelihood solution can exhibit over-fitting

even for many data points; should use regularised error or
MAP then.

Introduction to Statistical
Machine Learning

©2010
Christfried Webers
NICTA
The Australian National
University

Logistic Regression

1180f 183



Original Input versus Feature Space

o Used direct input x until now.

o All classification algorithms work also if we first apply a
fixed nonlinear transformation of the inputs using a vector
of basis functions ¢(x).

o Example: Use two Gaussian basis functions centered at
the green crosses in the input space.
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Original Input versus Feature Space

o Linear decision boundaries in the feature space
correspond to nonlinear decision boundaries in the input

space.

o Classes which are NOT linearly separable in the input
space can become linearly separable in the feature space.

o BUT: If classes overlap in input space, they will also

overlap in feature space.

o Nonlinear features ¢(x) can not remove the overlap; but

they may increase it !

05

05
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Part IV




Functional Transformations

o As before, the biases can be absorbed into the weights by
introducing an extra input xo = 1 and a hidden unit zo = 1.

M D
st = (3o (S0
=0 i=0

o Compare to Generalised Linear Model

M
wxw) =g | S wi e (x)
=0

hidden units

outputs

h
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B(x) = o(wo + wix; + wax,) for different parameter w.

w = (10,-0.5,0.5)



Aproximation Capabilities of Neural Networks

o Neural network approximating

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (—1,1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

o Neural network approximating

£(x) = sin(x)

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (—1,1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

o Neural network approximating

f(x) = I

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (—1,1). Red: resulting output. Dashed: Output of the

hidden units.

Introduction to Statistical
Machine Learning

©2010
Christfried Webers
NICTA
The Australian National
University

Neural Networks

1260f 183



Aproximation Capabilities of Neural Networks

o Neural network approximating Heaviside function

1, x>0
f(x)_{o, x<0

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (—1,1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

o Neural network for two-class classification.

e 2 inputs, 2 hidden units with tanh activation function, 1
output with logistic sigmoid activation function.

Red: y = 0.5 decision boundary. Dashed blue: z = 0.5 hidden
unit contours. Green: Optimal decision boundary from the
known data distribution.
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Parameter Optimisation

o Nonlinear mapping from input x, to output y(x,,
o Sum-of-squares error function over all training data

where we have N pairs of input vectors x,, and target

vectors t,,.

o Find the parameter w which minimises E(w)

by gradient descent.

2 ZHY Xn, W

W = arg min E(w)
w

— %,

w).
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Error Backpropagation

e Given current errors d;, the activation function A(-), its
derivative #/(-), and its output z; in the previous layer.

o Error in the previous layer via the backpropagation formula

5j = h/(aj) Z ijcsk.
k

o Components of the gradient VE, are then 25 — g, 7,
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Efficieny of Error Backpropagation

o As the number of weights is usually much larger than the

number of units (the network is well connected), the

complexity of calculating the gradient 25:(*)

backpropagation is of O(W) where W is the number of

weights.

via error

o Compare this to numerical differentiation using

OE,(W)  E,(wji+€) — E,(wj;)

= + O(e)

8wj,- €

or the numerically more stable (fewer round-off errors)

symmetric differences

OE,(W) _ En(wji +€) — Ex(wji — €)

8Wﬁ 2¢

which both need O(W?) operations.

+ 0(e?)
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o Model complexity matters again.

X x M=1 1 M =3 1 M =10
)Nﬂi,( 0 X\ X o
x
x x

-1 -1

) 1 0 1 0 1
M=1 M=3 M =10

Examples of two-layer networks with M hidden units.




o Stop training at the minimum of the validation set error.

‘ 0.45
|
! I
025 : :
: 04 !
|
0.2 | |
! I
0.15 ! 0.35 L
0 10 20 30 40 50 0 10 20 30 40 50

Training set error. Validation set error.




Part V




Kernel Methods

o Keep (some) of the training data and recast prediction as a
linear combination of kernel functions which are evaluated
at the kept training data points and the new test point.

o Let L(z,y(x) be any loss function

e and J(f) be any penalty quadratic in f,

o then minimum of penalised loss S| L(z,, y(x,)) + M (f)

o has form f(x) = > ay, k(x,, x)

o with o minimising >-Y_, L(1,, (Ka),) + A\a"Ka,

o and Kernel K; = Kj; = k(x;, x;)

o Kernel trick based on Mercer’s theorem: Any continuous,
symmetric, positive semi-definite kernel function &(x, y)

can be expressed as a dot product in a high-dimensional
(possibly infinite dimensional) space.
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Support Vector Machines choose the decision boundary which
maximises the smallest distance to samples in both classes.

W = arg max min [t,(W ¢(x,))] Vi, e{-1,1}

wiwl=1 "

Linear boundary for ¢ (x) = x®)




Non-linear boundary for general ¢(x).
N

w= Z an¢(xn)

n=1

for a few «,, # 0 and corresponding x, (support vectors).

N
FO) =Wp(x) =) ank(x,,x)  With k(x,,%) = p(x,) B(x)
n=1




o Introduce slack variable &, > 0 for each data point n .

0, data point is correctly classified and
&n = on margin boundary or beyond
|t, — y(x)|, otherwise




Overlapping Class distributions

The v-SVM algorithm using Gaussian kernels exp(—~||x — x'||?)
with v = 0.45 applied to a nonseparable data set in two
dimensions. Support vectors are indicated by circles.

-2
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Part VI




Introduction to Statistical

K-means Clustering N
©2010

Christfried Webers
o Goal: Partition N features x, into K clusters using T,AL”,"‘«,
Euclidian distance d(x;, x;) = ||x; — x;|| such that each -
feature belongs to the cluster with the nearest mean.
o Distortion measure : J(p, cl(x;)) = S0 d(Xi, Bey(x,))?
where cl(x;) is the index of the cluster centre closest to x;.
o Start with K arbitrary cluster centres p,. e LRI
o M-step: Minimise J w.r.t. ¢l(x;): Assign each data point x;
to closest cluster with index ci(x;).
o E-step: Minimise J w.r.t. u,: Find new p, as the mean of
points belonging to cluster k.

o lteration over M/E-steps converges to local minimum of J.

2t @
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K-means Clustering - Example
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o Mixture of Gaussians:
P(x|m, p, %) =

St N (%] g ) A/\

o Maximise likelihood
P(x|m, p, ) wrt. m p, 3.

Mixture Models and EM

o M-step: Minimise J
w.r.t. cl(x;): Assign
each data pointx;to O
closest cluster with
index cl(x;). Q

o E-step: Minimise J ,
w.r.t. p,: Find new Y- %,;@-; l"-f

n

0

N
N

-2 0 @ 2 -2 0 @y 2 -2 0 2

1, as the mean of 0 ‘ ° ."" ol

. : = e/ ¥
points belonging to | & Y |G
cluster k. T v e T % v e i = v gt
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EM for Gaussian Mixtures

o Given a Gaussian mixture and data X, maximise the log
likelihood w.r.t. the parameters (m, u, X).
@ Initialise the means w,, covariances p, and mixing
coefficients 7. Evaluate the log likelihood function.
Q E step: Evaluate the ~(z«) using the current parameters

N (x] s Z0)
(@) = =%
TSR N (x|, )

@ M step : Re-estimate the parameters using the current ~(z)

new _ 2 :’Y ) X 7_‘_new _ Ny
— nk n k -
N
n=1
new new new\ 7T
= E V(@) (X — g ) (X0 — )

© Evaluate the log likelihood, if not converged then goto 2.

N K
g ) = 3 3ot e i ) |
n=1 k=1
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o Set of D binary variables x;, i = 1,...,D.

o Each governed by a Bernoulli distribution with parameter
u;. Therefore

p@“ﬁZILﬁU—mfﬂ

o Expecation and covariance

EX] = p
cov[x] = diag{p(1 — u:)}




o Mixture
(x| p, ) Zﬂkp(xmk
with
(x| 1) Huk, 1 — )™

o Similar calculation as W|th mlxture of Gaussian
7 P (X | 14y

’Y(an) = <K _ . .
Zj=1 7 p(Xa | Il'j)
N
= Z'Y(an)
- N
= F Z an pke =X
Ny
T — ﬁ
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Examples from a digits data set, each pixel taken only binary P

values. o

Parameters 1y, for each Fit to one multivariate
component in the mixture. Bernoulli distribution.

1470f 183



Introduction to Statistical

The Role of Latent Variables Machine Leaming

©2010
Christfried Webers
NICTA
The Australian National
University

o EM finds the maximum likelihod solution for models with
latent variables.

o Two kinds of variables

o Observed variables X
o Latent variables Z

plus model parameters 6.
o Log likelihood is then

Inp(X|6) =In {Zp(X,Z | 0)}
V/

o Optimisation problem due to the log-sum.

e Assume maximisation of the distribution p(X,Z | ) over
the complete data set {X,Z} is straightforward.

e But we only have the incomplete data set {X} and the
posterior distribution p(Z | X, 0).

EM for Gaussian
Mixtures - Latent
Variables
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o Key idea of EM: As Z is not observed, work with an
‘averaged’ version Q(6,6°9) of the complete log-likelihood
Inp(X,Z|0), averaged over all states of Z.

0(6,0°) =" p(Z|X,6%) Inp(X,Z|6)
VA




EM Algorithm

@ Choose an initial setting for the parameters §°.

Q@ E step Evaluate p(Z | X, 6°9).
@ M step Evaluate 8™" given by

where

0(6,6°) = > p(Z|X,6°) Inp(X,Z|0)

@ Check for convergence of log likelihood or parameter

6" = arg max Q(6, 6°)
0

z

values. If not yet converged, then

and go to step 2.

eold — 0new

Introduction to Statistical
Machine Learning
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EM for Gaussian
Mixtures - Latent
Variables
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EM Algorithm - Convergence

o Start with the product rule for the observed variables x, the

unobserved variables Z, and the parameters 6

Inp(X,Z|0) = Inp(Z|X,0) + Inp(X|6).

o Apply >, q(Z) with arbitrary ¢(Z) to the formula

Zq YInp(X,Z|0) = Zq )Inp(Z|X,0) +1np(X|8).

o Rewrite as

Inp(X|0) => ¢(Z 11’X(Z)|9 - q(z

zZ VA

)In

p(Z|X,0)

q(Z)

L(q,0)

e KL(q||p) is the Kullback-Leibler divergence.

KL(qllp)
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Convergence of EM

1510f 183



‘Distance’ between two distributions p(y) and ¢(y)

KL(q||p) = Zq % —Z Zg
KL(qllp) = /q(y) hlz% dy = —/q(y) lnﬁ dy
KL(q|lp) > 0

not symmetric: KL(q||p) # KL(p||q)

KL(qlp) = 0iff g = p.
invariant under parameter transformations




o The two parts of Inp(X | 6)

) p(XZ[0) P(ZIX.0)
Inp(X|6) = S @ L= - S a@n

~ _
~~

£(2,6) KL(gllp)

Inp(X|6)




EM Algorithm - E Step

o Hold 6°“ fixed. Maximise the lower bound £(g, 68°') with
respect to ¢(+).

o L(g,0°% is a functional.

e Inp(X]0) does NOT depend on ¢(-).

o Maximum for £(¢, 8°°) will occur when the
Kullback-Leibler divergence vanishes.

o Therefore, choose ¢(Z) = p(Z | X, 6°%)

Inp(X[6) = Zq(Z) lnw — Zq(z) mIM

s oz 2 4(Z)

L(q,0) KL(qllp)
KL(qllp) = 0

L(g,67") Inp(X[6°)
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EM Algorithm - M Step

e Hold ¢(-) = p(Z | X, 8°%) fixed. Maximise the lower bound
L(q,0) with respectto 0 :
0"" = arg max, £(q,8°?) = argmax, 3", ¢(-) Inp(X,Z | 6)
o L(q,0™") > L(g,6°) unless maximum already reached.
o Asq() = p(Z|X,06%) is fixed, p(Z | X, 6™") will not be
equal to ¢(+), and therefore the Kullback-Leiber distance
will be greater than zero (unless converged).

(X20) 5~ g, P(ZIX.0)

_ WP

£(q,0) KL(¢[lp)

KL(dl) [

£(q,6™") In p(X|6™")
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gold guew

Red curve : incomplete data likelihood.
Blue curve : After E step. Green curve : After M step.
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e In a computer usually via pseudorandom number
generator : an algorithm generating a sequence of
numbers that approximates the properties of random
numbers. Sampling from the

Uniform Distribution
o Example : linear congruential generators
2 = (az" +¢) mod m

for modulus m > 0, multiplier 0 < a < m, increment
0 < ¢ < m, and seed zg.
o Other classes of pseudorandom number generators:

o Lagged Fibonacci generators
o Linear feedback shift registers
o Generalised feedback shift registers
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o Used since the 1960s on many machines
o Defined by the recurrence

Z(n+1) — (216 + 3) z(n) mOd 231




o Plotting (z"+2),z"t1),2")"in 3D ...




o Plotting (z"+2), z(+1) z)"in 3D ...and changing the
viewpoint results in 15 planes.




A Bad Generator - RANDU

o Analyse the recurrence
Z(I‘Hrl) — (216 + 3) Z(n) mOd 231

e Assuming every equation to be modulo 23!, we can
correlate three samples

Z(n—i—2) _ (216 + 3 2 (n)
= (22 4+6-2'° 4+ 9)z"

= (6(2'" +3) — 9)z("
— 6+ _ g ()

e Marsaglia, George "Random Numbers Fall Mainly In The
Planes", Proc National Academy of Sciences 61, 25-28,

1968.
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Sampling from the
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o Goal: Sample from p(y) which is given in analytical form.

o Suppose uniformly distributed samples of z in the interval
(0,1) are available.

o Calculate the cumulative distribution function

Sampling from Standard
Distributions

e Transform the samples from ¢/(z|0, 1) by

y=h"'(z)

to obtain samples y distributed according to p(y).
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o Goal: Sample from p(y) which is given in analytical form.

o If a uniformly distributed random variable z is transformed
using y = h~!(z) then y will be distributed according to p(y).

3

1

Sampling from Standard
Distributions

v
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Sampling from the Exponential Distribution sy
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o Goal: Sample from the exponential distribution e sl Natonat
) de ™ 0<y
pVY) =
0 y<0

with rate parameter \ > 0.

o Suppose uniformly distributed samples of z in the interval Sumpling from Standand
(0,1) are available. Distributions

o Calculate the cumulative distribution function
y y
h(y) = / p(x) dx = / e Ndx=1—eN
—00 0
e Transform the samples from /(2| 0, 1) by
y=h() = —+In(1 )

to obtain samples y distributed according to the
exponential distribution.
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@ Generate pairs of uniformly distributed random numbers
21,22 € (—1,1) (6.9. zs =2z — 1 for z from U(z] 0, 1))

O Discard any pair (z;,z,) unless z2 + z3 < 1. Results in a
uniform distribution inside of the unit circle p(z1,z2) = 1/7.

Q Evaluate * = z3 + z3 and

2lnr
yi=21

< 21nr2)
Y2 =22
d

@ y; and y, are independent with joint distribution

d(z1,22)
o1, y2)

Sampling from Standard
Distributions
1/2

Lt L i

pO1,y2) =plz1,22) = ¢ vir
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Rejection Sampling

o Assumption 1 : Sampling directly from p(z) is difficult, but
we can evaluate p(z) up to some unknown normalisation

constant Z,
I _
p(z) = ZP(Z)
o Assumption 2 : We can draw samples from a simpler
distribution ¢(z) and for some constant k£ and all z holds

kq(z) > p(z)

Introduction to Statistical
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Rejection Sampling

@ Generate a random number z, from the distribution g(z).
@ Generate a number from the u, from the uniform

distribution over [0, k g(zo)].

Q If up > p(z0) then reject the pair (zo, uo).
@ The remaining pairs have uniform distribution under the

curve p(z).

@ The z values are distributed according to p(z).

kq(z0)

Uo

Introduction to Statistical
Machine Learning
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Importance Sampling

The Australian National

e Provides a framework to directly calculate the expectation mp—
E, [f(z)] with respect to some distribution p(z).

o Does NOT provide p(z).
e Again use a proposal distribution ¢(z) and draw samples z

from it.
e Then
Bl = [fpe) d= (10 2q() aem 7 SR oy |
) L £ 4(z0)
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Importance Sampling - Unnormalised

o Consider both p(z) and g(z) to be not normalised.

p(z) = )

Zp

o |t follows then that

L

Eff] ~ 213 7f()

Z, L p

o Use the same set of samples to calculate

Z

Zy

e resulting in the formula for unnormalised distributions

E[f]~> wif(z")
P

L

L

2

=1

q(2)

I,

_

z
zZ,

7 =

w; =

)

p(z?)
q(z)

T

I  ~

2

m=1"Tm
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Importance Sampling - Key Points

o Try to choose sample points in the input space where the
product f(z) p(z) is large.
e Or at least where p(z) is large.

o Importance weights r; correct the bias introduced by
sampling from the proposal distribution ¢(z) instead of the
wanted distribution p(z).

e Success depends on how well g(z) approximates p(z).
o If p(z) > 0in same region, then g(z) > 0 necessary.
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Markov Chain Monte Carlo

o Goal : Generate samples from the distribution p(z).

o |dea : Build a machine which uses the current sample to
decide which next sample to produce in such a way that
the overall distribution of the samples will be p(z) .

@ Current sample z(” is known. Generate a new sample z*
from a proposal distribution ¢(z | z") we know how to
sample from.

@ Accept or reject the new sample according to some
appropriate criterion.

(+1) 7~ if accepted
Z R W
z if rejected

@ Proposal distribution depends on the current state.
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Metropolis Algorithm

@ Choose a symmetric proposal distribution
q(za | z8) = q(z5|2a)-
Q@ Accept the new sample z* with probability

A(z*,z")) = min (1, I%)

@ How? Choose a random number « with uniform
distribution in (0, 1). Accept new sample if A(z*,z(")) > u.
Q
L) z*  if accepted
"1z if rejected

Rejection of a point leads to inclusion of the previous sample.
(Different from rejection sampling.)
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Metropolis Algorithm - Illlustration

e Sampling from a Gaussian Distribution (black contour
shows one standard deviation).

o Proposal distribution is isotropic Gaussian with standard
deviation 0.2.

o 150 candidates generated; 43 rejected.

3

25

2

15

1

0.5

accepted steps, rejected steps.
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Markov Chain Monte Carlo - Metropolis-Hasting

o Generalisation of the Metropolis algorithm for
nonsymmetric proposal distributions g;.

o At step 7, draw a sample z* from the distribution g;(z|z(™)
where k labels the set of possible transitions.

o Accept with probability

p(z* (1) | >
Af(z,2(™)) = min (1’~1’(Z ) (27 | 2¥) )
() g(z [27)

o Choice of proposal distribution critical.
e Common choice : Gaussian centered on the current state.

o small variance — high acceptance rate, but slow walk
through the state space; samples not independent
o large variance — high rejection rate
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Part VIII




More Machine Learning

o Graphical Models

e Gaussian Processes

e Sequential Data

o Sequential Decision Theory

e Learning Agents

o Reinforcement Learning

o Theoretical Model Selection

o Additive Models and Trees and Related Methods
o Approximate (Variational) Inference
e Boosting

e Concept Learning

o Computational Learning Theory

o Genetic Algorithms

e Learning Sets of Rules

o Analytical Learning

o ...
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Part IX




Journals

(4]

Journal of Machine Learning Research
Machine Learning

IEEE Transactions on Pattern Analysis and Machine
Intelligence

o IEEE Transactions on Neural Networks

o Neural Computation

o Neural Networks

Annals of Statistics

o Journal of the American Statistical Association
e SIAM Journal on Applied Mathematics (SIAP)

o ...

(]

(]

(]
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Conferences

o International Conference on Machine Learning (ICML)
o European Conference on Machine Learning (ECML)
o Neural Information Processing Systems (NIPS)

o Algorithmic Learning Theory (ALT)

o Computational Learning Theory (COLT)

o Uncertainty in Artificial Intelligence (UAI)

o International Joint Conference on Artificial Intelligence
(IJCAI)

o International Conference on Artificial Neural Networks
(ICANN)
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Pattern Recognition and The Elements of Statistical
Machine Learning Learning

Christopher M. Bishop Trevor Hastie, Robert
Tibshirani, Jerome Friedman




Pattern Classification Introduction to Machine
Learning

Richard O. Duda, Peter E. Ethem Alpaydin
Hart, David G. Stork




o UCI Repository
http://archive.ics.uci.edu/ml/

o UCI Knowledge Discovery Database Archive
http://kdd.ics.uci.edu/summary.data.
application.html

o Statlib
http://lib.stat.cmu.edu/

o Delve
http://www.cs.utoronto.ca/~delve/

o Time Series Database
http://robjhyndman.com/TSDL



http://archive.ics.uci.edu/ml/
http://kdd.ics.uci.edu/summary.data.application.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/~delve/
http://robjhyndman.com/TSDL

