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Kernel Methods and SVM

27 Kernel Methods

28 Maximum Margin Classifiers
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Mixture Models and EM
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Resources
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More Machine Learning

39 More Machine Learning
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What is Machine Learning?

Definition

Machine learning is concerned with the design and
development of algorithms that allow computers (machines) to
improve their performance over time based on data.

learning from past experience (training data)
generalisation
quantify ‘learning’: improve their performance over time
need to quantify ‘performance’

Definition (Mitchell, 1998)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves
with experience E.
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Why Machine Learning?

Machine Learning is essential when
humans are unable to explain their expertise (e.g. speech
recognition).
humans are not around for help (e.g. navigation on Mars,
underwater robotics).
large amount of data with possible hidden relationships
and correlations (empirical sciences, e.g. discover unusual
astronomical objects).
environment changes (fast) in time (e.g. mobile phone
network).
solutions need to be adapted to many particular cases
(e.g. junk mail).

Example: It is easier to write a program that learns to play
checkers or backgammon well by self-play rather than
converting the expertise of a master player to a program.
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Junk Mail Filtering

Given examples of data (mail), and targets {Junk,NoJunk}.

Learn to identify new incoming mail as Junk or NoJunk.
Continue to learn from the user classifying new mail.
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Handwritten Digit Recognition

Given handwritten ZIP codes on letters, money amounts
on cheques etc.

Learn to correctly recognise new handwritten digits.
Nonsense input: “Don’t know” preferred to some wrong
digit.
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Backgammon

World best computer program TD-GAMMON (Tesauro
1992, 1995) played over a million games against itself.
Plays now on the level of human world champion.
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Image Denoising

Original image Noise added Denoised

McAuley et. al., "Learning High-Order MRF Priors of Color
Images", ICML2006
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Separating Audio Sources

Cocktail Party Problem (human brains may do it differently ;–)

MicrophonesAudio Sources Audio Mixtures
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Other applications of Machine Learning

autonomous robotics,
detecting credit card fraud,
detecting network intrusion,
bioinformatics,
neuroscience,
medical diagnosis,
stock market analysis,
. . .
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Related Fields

Artificial Intelligence - AI
Statistics
Game Theory
Neuroscience, Psychology
Data Mining
Computer Science
Adaptive Control Theory
. . .
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Fundamental Types of Learning

Unsupervised Learning
Association
Clustering
Density Estimation
Blind source
separation

Supervised Learning
Regression
Classification

Reinforcement Learning
Agents

Others
Active Learning
SemiSupervised
Learning
Transductive
Learning
. . .
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Unsupervised Learning

Only input data given, no targets (labels).
Goal: Determine how the data are organised.
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Unsupervised Learning - Clustering

Clustering : Group similar instances

Example applications
Clustering customers in
Customer-Relationship-Management
Image compression: color quantisation
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Supervised Learning

Given pairs of data and targets (=labels).
Learn a mapping from the data to the targets (training).
Goal: Use the learned mapping to correctly predict the
target for new input data.
Need to generalise well from the training data/target pairs.
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Reinforcement Learning

Example: Game playing. There is one reward at the end of
the game (negative or positive).
Find suitable actions in a given environment with the goal
of maximising some reward.
correct input/output pairs never presented
Reward might only come after many actions.
Current action may not only influence the current reward,
but future rewards too.
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Reinforcement Learning

observation1 

Agent

action1 

choose action

reward1 
receive
reward

observation2 

action2 

reward2 

Agent

choose action

receive
reward

Agent

rewardi 

actioni 

observationi 
receive
reward

...

choose action

Exploration versus Exploitation.
Well suited for problems with a long-term versus
short-term reward trade-off.
Naturally focusing on online performance.
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Basic Probability Theory

Probability

is a way of expressing knowledge or belief that an event will
occur or has occurred.

Example: Fair Six-Sided Die

Sample space Ω = {1, 2, 3, 4, 5, 6}
Events Even = {2, 4, 6}, Odd = {1, 3, 5}
Probability P(3) = 1

6 , P(Odd) = P(Even) = 1
2

Outcome 3 ∈ Ω

Conditional Probability P(3 |Odd) = P(3 and Odd)
P(Odd) = 1/6

1/2 = 1
3

General Axioms
P({}) = 0 ≤ P(A) ≤ P(Ω) = 1,
P(A ∪ B) + P(A ∩ B) = P(A) + P(B),
P(A ∩ B) = P(A |B)P(B).

Rules of Probability
Sum rule: P(X) =

∑
Y P(X,Y)

Product rule: P(X,Y) = P(X|Y) P(Y)
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Probability Jargon

(Un)fair Coin: Ω = {Tail = 0,Head = 1} . P(1) = θ ∈ [0, 1].

Likelihood P(1101 | θ) = θ × θ × (1− θ)× θ
Maximum Likelihood (ML) estimate θ̂ = arg maxθ P(1101 | θ) = 3

4
Prior If we are indifferent, then P(θ) = const.
Evidence P(1101) =

∑
θ P(1101 | θ)P(θ) = 1

20 (actually
∫

)
Posterior P(θ | 1101) = P(1101 | θ)P(θ)

P(1101) ∝ θ3(1− θ) (Bayes Rule)

Maximum a Posterior (MAP) estimate θ̂ = arg maxθ P(θ | 1101) = 3
4

Predictive Distribution P(1 | 1101) = P(11011)
P(1101) = 2

3

Expectation E [f | . . .] =
∑
θ f (θ)P(θ | . . . ), e.g. E [θ | 1101] = 2

3
Variance var(θ) = E

[
(θ − E [θ])2 | 1101

]
= 2

63
Probability Density P(θ) = 1

εP([θ, θ + ε]) for ε→ 0
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Polynomial Curve Fitting

some artificial data created from the function

sin(2πx) + random noise x = 0, . . . , 1

x

t

0 1

−1

0

1
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Polynomial Curve Fitting - Training Data

N = 10

x ≡ (x1, . . . , xN)T

t ≡ (t1, . . . , tN)T

xi ∈ R i = 1,. . . , N

ti ∈ R i = 1,. . . , N
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Polynomial Curve Fitting - Model Specification

M : order of polynomial

y(x,w) = w0 + w1 x + w2 x2 + · · ·+ wM xM

=
M∑

m=0

wm xm

nonlinear function of x

linear function of the unknown model parameter w
How can we find good parameters w = (w1, . . . ,wM)T?
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Learning is Improving Performance

t

x

y(xn,w)

tn

xn

Performance measure : Error between target and
prediction of the model for the training data

E(w) =
1
2

N∑
n=1

(y(xn,w)− tn)
2

unique minimum of E(w) for argument w?
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Model is Constant Function

y(x,w) =
M∑

m=0

wm xm

∣∣∣∣∣
M=0

= w0

x

t

M = 0

0 1

−1

0

1
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Model is Linear Function

y(x,w) =
M∑

m=0

wm xm

∣∣∣∣∣
M=1

= w0 + w1 x

x

t

M = 1

0 1

−1

0

1
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Model is Cubic Polynomial

y(x,w) =
M∑

m=0

wm xm

∣∣∣∣∣
M=3

= w0 + w1 x + w2 x2 + w3 x3

x

t

M = 3

0 1

−1

0

1
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Model is 9th order Polynomial

y(x,w) =
M∑

m=0

wm xm

∣∣∣∣∣
M=9

= w0 + w1 x + · · ·+ w8 x8 + w9 x9

overfitting

x

t

M = 9

0 1

−1

0

1
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Testing the Fitted Model

Train the model and get w?

Get 100 new data points
Root-mean-square (RMS) error

ERMS =
√

2E(w?)/N

M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test
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Parameters of the Fitted Model

M = 0 M = 1 M = 3 M = 9
w?0 0.19 0.82 0.31 0.35
w?1 -1.27 7.99 232.37
w?2 -25.43 -5321.83
w?3 17.37 48568.31
w?4 -231639.30
w?5 640042.26
w?6 -1061800.52
w?7 1042400.18
w?8 -557682.99
w?9 125201.43

Table: Coefficients w? for polynomials of various order.
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Get More Data

N = 15

x

t

N = 15

0 1

−1

0

1
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Get Even More Data

N = 100
heuristics : have no less than 5 to 10 times as many data
points than parameters
but number of parameters is not necessarily the most
appropriate measure of model complexity !
later: Bayesian approach

x

t

N = 100

0 1

−1

0

1
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Regularisation

How to constrain the growing of the coefficients w ?
Add a regularisation term to the error function

Ẽ(w) =
1
2

N∑
n=1

( y(xn,w)− tn)
2

+
λ

2
‖w‖2

Squared norm of the parameter vector w

‖w‖2 ≡ wTw = w2
0 + w2

1 + · · ·+ w2
M
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Regularisation

M = 9

x

t

ln λ = −18

0 1

−1

0

1
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Regularisation

M = 9

x

t

ln λ = 0

0 1

−1

0

1
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Regularisation

M = 9
E

R
M
S

 

 

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test
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Part II

Linear Regression
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Linear Regression Model

input "feature" vector x = (1 ≡ x(0), x(1), . . . , x(D))T ∈ RD+1

linear regression model

y(x,w) =
D∑

j=0

wj x(j) = wTx

model parameter w = (w0, . . . ,wD)T where w0 is the bias

1.0
1.5

2.0
2.5

3.0
X1

1.0

1.5

2.0X2

0

5

10

15

20

Y

Hyperplanes for w = {(2, 1,−1), (5, 2, 1), (10, 2, 2)}
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Linear Regression - Finding the Best Model

Use training data (x1, t1), . . . , (xN , tN)
and loss function (performance measure) to find best w.
Example : Residual sum of squares

Loss(w) =
N∑

n=1

(tn − y(xn,w))2

Least square regression

ŵ = arg min
w

Loss(w)

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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X2

Y

FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .
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Linear Basis Function Models

Linear combination of fixed nonlinear basis functions
φj(x) ∈ R

y(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x)

parameter w = (w0, . . . ,wM−1)T ,
w0 is the bias parameter,
basis functions φ = (φ0, . . . , φM−1)T

convention φ0(x) = 1
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Polynomial Basis Functions

Scalar input variable x

φj(x) = xj

Limitation : Polynomials are global functions of the input
variable x.
Extension: Split the input space into regions and fit a
different polynomial to each region (spline functions).
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’Gaussian’ Basis Functions

Scalar input variable x

φj(x) = exp
{
− (x− µj)

2

2s2

}
Not a probability distribution.
No normalisation required, taken care of by the model
parameters w.
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Sigmoidal Basis Functions

Scalar input variable x

φj(x) = σ

(
x− µj

s

)
where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)

σ(a) is related to the hyperbolic tangent tanh(a) by
tanh(a) = 2σ(a)− 1.
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Other Basis Functions - Wavelets

Wavelets : localised in
both space and
frequency
mutually orthogonal to
simplify application.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5

Time

0.0 0.2 0.4 0.6 0.8 1.0

Haar Wavelets

Time

0.0 0.2 0.4 0.6 0.8 1.0

Symmlet-8 Wavelets

ψ1,0

ψ2,1

ψ2,3

ψ3,2

ψ3,5

ψ4,4

ψ4,9

ψ5,1

ψ5,15

ψ6,15

ψ6,35

FIGURE 5.16. Some selected wavelets at different
translations and dilations for the Haar and symmlet
families. The functions have been scaled to suit the
display.
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Other Basis Functions - 2D Splines

Splines: polynomials restricted to regions of the input space

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5

FIGURE 5.10. A tensor product basis of B-splines,
showing some selected pairs. Each two-dimensional
function is the tensor product of the corresponding one
dimensional marginals.
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Maximum Likelihood and Least Squares

No special assumption about the basis functions φj(x). In
the simplest case, one can think of φj(x) = xj.
Assume target t is given by

t = y(x,w)︸ ︷︷ ︸
deterministic

+ ε︸︷︷︸
noise

where ε is a zero-mean Gaussian random variable with
precision (inverse variance) β.
Thus

p(t | x,w, β) = N (t | y(x,w), β−1)
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Maximum Likelihood and Least Squares

Likelihood of one target t given the data x

p(t | x,w, β) = N (t | y(x,w), β−1)

Set of inputs X = {x1, . . . , xN} with corresponding target
values t = (t1, . . . , tn)T .
Assume data are independent and identically distributed
(i.i.d.) (means : data are drawn independent and from the
same distribution). The likelihood of the target t is then

p(t |X,w, β) =
N∏

n=1

N (tn | y(xn,w), β−1)

=
N∏

n=1

N (tn |wTφ(xn), β−1)
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Maximum Likelihood and Least Squares

Consider the logarithm of the likelihood p(t |X,w, β) (the
logarithm is a monoton function! )

ln p(t |X,w, β) =
N∑

n=1

lnN (tn |wTφ(xn), β−1)

=
N∑

n=1

ln

(√
β

2π
exp

{
−β

2
(tn − wTφ(xn))2

})

=
N
2

lnβ − N
2

ln(2π)− βED(w)

where the sum-of-squares error function is

ED(w) =
1
2

N∑
n=1

{tn − wTφ(xn)}2.

arg maxw ln p(t |X,w, β)→ arg minw ED(w)
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Maximum Likelihood and Least Squares

Rewrite the Error Function

ED(w) =
1
2

N∑
n=1

{tn − wTφ(xn)}2 =
1
2

(t−Φw)T(t−Φw)

where t = (t1, . . . , tN)T , and

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


Maximum likelihood estimate

wML = arg max
w

ln p(t |w, β) = arg min
w

ED(w)

= (ΦTΦ)−1ΦT t = Φ†t

where Φ† is the Moore-Penrose pseudo-inverse of Φ.
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Regularized Least Squares

Add regularisation in order to prevent overfitting

ED(w) + λEW(w)

with regularisation coefficient λ.
Simple quadratic regulariser

EW(w) =
1
2

wTw

Maximum likelihood solution

wML =
(
λI + ΦTΦ

)−1
ΦT t
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Regularized Least Squares

More general regulariser

EW(w) =
1
2

M∑
j=1

|wj|q

q = 1 (lasso) leads to a sparse model if λ large enough.

q = 0.5 q = 1 q = 2 q = 4



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Linear Basis Function
Models

Maximum Likelihood and
Least Squares

Regularized Least
Squares

Bayesian Regression

Example for Bayesian
Regression

Predictive Distribution

Limitations of Linear
Basis Function Models

60of 183

Comparison of Quadratic and Lasso Regulariser

Assume a sufficiently large regularisation coefficient λ.

Quadratic regulariser

1
2

M∑
j=1

w2
j

w1

w2

w?

Lasso regulariser

1
2

M∑
j=1

|wj|

w1

w2

w?
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Bayesian Regression

Bayes Theorem

posterior =
likelihood× prior

normalisation
p(w | t) =

p(t |w) p(w)

p(t)

likelihood for i.i.d. data

p(t |w) =
N∏

n=1

N (tn | y(xn,w), β−1)

=
N∏

n=1

N (tn |wTφ(xn), β−1)

= const× exp{−β 1
2

(t−Φw)T(t−Φw)}

where we left out the conditioning on x (always assumed),
and β, which is assumed to be constant.
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How to choose a prior?

Can we find a prior for the given likelihood which
makes sense for the problem at hand
allows us to find a posterior in a ‘nice’ form

An answer to the second question:

Definition ( Conjugate Prior)

A class of prior probability distributions p(w) is conjugate to a
class of likelihood functions p(x |w) if the resulting posterior
distributions p(w | x) are in the same family as p(w).
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Examples of Conjugate Prior Distributions

Table: Discrete likelihood distributions

Likelihood Conjugate Prior
Bernoulli Beta
Binomial Beta
Poisson Gamma

Multinomial Dirichlet

Table: Continuous likelihood distributions

Likelihood Conjugate Prior
Uniform Pareto

Exponential Gamma
Normal Normal

Multivariate normal Multivariate normal
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Bayesian Regression

No data point
(N = 0): start with
prior.
Each posterior acts
as the prior for the
next data/target pair.
Nicely fits a
sequential learning
framework.

p(w)

p(t1 | w, x1 ) p(w | t1, x1 )

prior/posterior

p(t2 | w, x2)

Bayes

likelihood

p(w | t1, x1, t2, x2)Bayes
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Sequential Update of the Posterior

Example of a linear (basis function) model
Single input x, single output t

Linear model y(x,w) = w0 + w1x.
Data creation

1 Choose an xn from the uniform distribution U(x | − 1, 1).
2 Calculate f (xn, a) = a0 + a1xn, where a0 = −0.3, a1 = 0.5.
3 Add Gaussian noise with standard deviation σ = 0.2,

tn = N (xn | f (xn, a), 0.04)

Set the precision of the uniform prior to α = 2.0.
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Sequential Update of the Posterior
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Sequential Update of the Posterior
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Predictive Distribution

Definition (The Predictive Distribution)

The Predictive Distribution is the probability of the test target t
given test data x, the training data set X and the training
targets t.

p(t | x,X, t)

How to calculate the Predictive Distribution?

p(t | x,X, t) =

∫
p(t,w | x,X, t) dw (sum rule)

=

∫
p(t |w, x,X, t)︸ ︷︷ ︸

testing only

p(w | x,X, t)︸ ︷︷ ︸
training only

dw

=

∫
p(t |w, x) p(w |X, t) dw
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Predictive Distribution – Isotropic Gaussian Prior

(Simplified) isotropic Gaussian prior

p(w |α) = N (w | 0, α−1I)

Predictive distribution p(t | x,X, t) is Gaussian, variance
after N data points have been seen

σ2
N(x) =

1
β︸︷︷︸

noise of data

+φT(αI + βΦTΦ)−1φ︸ ︷︷ ︸
uncertainty of w

σ2
N+1(x) ≤ σ2

N(x) and limN→∞ σ2
N(x) = 1

β
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Predictive Distribution – Isotropic Gaussian Prior

x
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1

Example with artificial sinusoidal data from sin(2πx) (green) and
added noise. Mean of the predictive distribution (red) and regions of

one standard deviation from mean (red shaded).



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Linear Basis Function
Models

Maximum Likelihood and
Least Squares

Regularized Least
Squares

Bayesian Regression

Example for Bayesian
Regression

Predictive Distribution

Limitations of Linear
Basis Function Models

71of 183

Samples from the Posterior Distribution
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Example with artificial sinusoidal data from sin(2πx) (green) and added
noise. Samples y(x,w) (red) from the posterior distribution p(w |X, t) .
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Limitations of Linear Basis Function Models

Basis function φj(x) are fixed before the training data set is
observed.
Curse of dimensionality : Number of basis function grows
rapidly, often exponentially, with the dimensionality D.
But typical data sets have two nice properties which can
be exploited if the basis functions are not fixed :

Data lie close to a nonlinear manifold with intrinsic
dimension much smaller than D. Need algorithms which
place basis functions only where data are (e.g. radial basis
function networks, support vector machines, relevance
vector machines, neural networks).
Target variables may only depend on a few significant
directions within the data manifold. Need algorithms which
can exploit this property (Neural networks).
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Curse of Dimensionality

Linear Algebra allows us to operate in n-dimensional
vector spaces using the intution from our 3-dimensional
world as a vector space. No surprises as long as n is finite.
If we add more structure to a vector space (e.g. inner
product, metric), our intution gained from the
3-dimensional world around us may be wrong.
Example: Sphere of radius r = 1. What is the fraction of
the volume of the sphere in a D-dimensional space which
lies between radius r = 1 and r = 1− ε ?
Volume scales like rD, therefore the formula for the volume
of a sphere is VD(r) = KDrD.

VD(1)− VD(1− ε)
VD(1)

= 1− (1− ε)D
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Curse of Dimensionality

Fraction of the volume of the sphere in a D-dimensional
space which lies between radius r = 1 and r = 1− ε

VD(1)− VD(1− ε)
VD(1)

= 1− (1− ε)D
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Curse of Dimensionality

Probability density with respect to radius r of a Gaussian
distribution for various values of the dimensionality D.
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D = 20

r
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(r
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Curse of Dimensionality

Probability density with respect to radius r of a Gaussian
distribution for various values of the dimensionality D.
Example: D = 2; assume µ = 0,Σ = I

N (x | 0, I) =
1

2π
exp

{
−1

2
xTx
}

=
1

2π
exp

{
−1

2
(x2

1 + x2
2)

}
Coordinate transformation

x1 = r cos(φ) x2 = r sin(φ)

Probability in the new coordinates

p(r, φ | 0, I) = N (r(x), φ(x) | 0, I) | J |

where | J | = r is the determinant of the Jacobian for the
given coordinate transformation.

p(r, φ | 0, I) =
1

2π
r exp

{
−1

2
r2
}
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Curse of Dimensionality

Probability density with respect to radius r of a Gaussian
distribution for D = 2 (and µ = 0,Σ = I)

p(r, φ | 0, I) =
1

2π
r exp

{
−1

2
r2
}

Integrate over all angles φ

p(r | 0, I) =

∫ 2π

0

1
2π

r exp
{
−1

2
r2
}

dφ = r exp
{
−1

2
r2
}

D = 1

D = 2

D = 20

r

p(
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0 2 4
0

1
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Part III

Linear Classification
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Classification

Goal : Given input data x, assign it to one of K discrete
classes Ck where k = 1, . . . ,K.
Divide the input space into different regions.

4 2 0 2 4 6 8

8

6

4

2

0

2
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How to represent binary class labels?

Class labels are no longer real values as in regression, but
a discrete set.
Two classes : t ∈ {0, 1}
( t = 1 represents class C1 and t = 0 represents class C2)
Can interpret the value of t as the probability of class C1,
with only two values possible for the probability, 0 or 1.
Note: Other conventions to map classes into integers
possible, check the setup.
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How to represent multi-class labels?

If there are more than two classes ( K > 2), we call it a
multi-class setup.
Often used: 1-of-K coding scheme in which t is a vector of
length K which has all values 0 except for tj = 1, where j
comes from the membership in class Cj to encode.
Example: Given 5 classes, {C1, . . . , C5}. Membership in
class C2 will be encoded as the target vector

t = (0, 1, 0, 0, 0)T

Note: Other conventions to map multi-classes into integers
possible, check the setup.
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Linear Model

Idea: Use again a Linear Model as in regression: y(x,w) is
a linear function of the parameters w

y(xn,w) = wTφ(xn)

But generally y(xn,w) ∈ R.
Example: Which class is y(x,w) = 0.71623 ?
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Generalised Linear Model

Apply a mapping f : R→ Z to the linear model to get the
discrete class labels.
Generalised Linear Model

y(xn,w) = f (wTφ(xn))

Activation function: f (·)
Link function : f−1(·)

-0.5 0.0 0.5 1.0
z

-1.0

-0.5

0.5

1.0

signHzL

Figure: Example of an activation function f (z) = sign (z) .
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Three Models for Decision Problems

In increasing order of complexity
Find a discriminant function f (x) which maps each input
directly onto a class label.
Discriminative Models

1 Solve the inference problem of determining the posterior
class probabilities p(Ck | x).

2 Use decision theory to assign each new x to one of the
classes.

Generative Models
1 Solve the inference problem of determining the

class-conditional probabilities p(x | Ck).
2 Also, infer the prior class probabilities p(Ck).
3 Use Bayes’ theorem to find the posterior p(Ck | x).
4 Alternatively, model the joint distribution p(x, Ck) directly.
5 Use decision theory to assign each new x to one of the

classes.
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Decision Theory - Key Ideas

probability of a mistake

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫
R1

p(x, C2) dx +

∫
R2

p(x, C1) dx

goal: minimize p(mistake)

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x
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Minimising the Expected Loss

Not all mistakes are equally costly.
Weight each misclassification of x to the wrong class Cj

instead of assigning it to the correct class Ck by a factor Lkj.
The expected loss is now

E [L] =
∑

k

∑
j

∫
Rj

Lkj p(x, Ck)dx

Goal: minimize the expected loss E [L]
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The Reject Region

Avoid making automated decisions on difficult cases.
Difficult cases:

posterior probabilities p(Ck | x) are very small
joint distributions p(x, Ck) have comparable values

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region
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Least Squares for Classification

Regression with a linear function of the model parameters
and minimisation of sum-of-squares error function resulted
in a closed-from solution for the parameter values.
Is this also possible for classification?
Given input data x belonging to one of K classes Ck.
Use 1-of-K binary coding scheme.
Each class is described by its own linear model

yk(x) = wT
k x + wk0 k = 1, . . . ,K
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Least Squares for Classification

With the conventions

w̃k =

[
wk0
wk

]
∈ RD+1

x̃ =

[
1
x

]
∈ RD+1

W̃ =
[
w̃1 . . . w̃K

]
∈ R(D+1)×K

we get for the discriminant function (vector valued)

y(x) = W̃T x̃ ∈ RK .

For a new input x, the class is then defined by the index of
the largest value in the row vector y(x)
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Determine W̃

Given a training set {xn, t} where n = 1, . . . ,N, and t is the
class in the 1-of-K coding scheme.
Define a matrix T where row n corresponds to tT

n .
The sum-of-squares error can now be written as

ED(W̃) =
1
2

tr
{

(X̃W̃− T)T(X̃W̃− T)
}

The minimum of ED(W̃) will be reached for

W̃ = (X̃TX̃)−1X̃TT = X̃†T

where X̃† is the pseudo-inverse of X̃.
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Discriminant Function for Multi-Class

The discriminant function y(x) is therefore

y(x) = W̃T x̃ = TT(X̃†)T x̃,

where X̃ is given by the training data, and x̃ is the new
input.
Interesting property: If for every tn the same linear
constraint aT tn + b = 0 holds, then the prediction y(x) will
also obey the same constraint

aTy(x) + b = 0.

For the 1-of-K coding scheme, the sum of all components
in tn is one, and therefore all components of y(x) will sum
to one. BUT: the components are not probabilities, as they
are not constraint to the interval (0, 1).
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Deficiencies of the Least Squares Approach

Magenta curve : Decision Boundary for the least squares
approach ( Green curve : Decision boundary for the logistic
regression model described later)
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Deficiencies of the Least Squares Approach

Magenta curve : Decision Boundary for the least squares
approach ( Green curve : Decision boundary for the logistic
regression model described later)
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Fisher’s Linear Discriminant

View linear classification as dimensionality reduction.

y(x) = wTx

If y ≥ −w0 then class C1, otherwise C2.
But there are many projections from a D-dimensional input
space onto one dimension.
Projection always means loss of information.
For classification we want to preserve the class separation
in one dimension.
Can we find a projection which maximally preserves the
class separation ?
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Fisher’s Linear Discriminant

Samples from two classes in a two-dimensional input space
and their histogram when projected to two different
one-dimensional spaces.
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Fisher’s Linear Discriminant - First Try

Given N1 input data of class C1, and N2 input data of class
C2, calculate the centres of the two classes

m1 =
1

N1

∑
n∈C1

xn, m2 =
1

N2

∑
n∈C2

xn

Choose w so as to maximise the projection of the class
means onto w

m1 − m2 = wT(m1 −m2)

Problem with non-uniform covariance
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Fisher’s Linear Discriminant

Measure also the within-class variance for each class

s2
k =

∑
n∈Ck

(yn − mk)
2

where yn = wTxn.
Maximise the Fisher criterion

J(w) =
(m2 − m1)2

s2
1 + s2

2
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Fisher’s Linear Discriminant

The Fisher criterion can be rewritten as

J(w) =
wTSBw
wTSWw

SB is the between-class covariance

SB = (m2 −m1)(m2 −m1)T

SW is the within-class covariance

SW =
∑
n∈C1

(xn −m1)(xn −m1)T +
∑
n∈C2

(xn −m2)(xn −m2)T
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Fisher’s Linear Discriminant

The Fisher criterion

J(w) =
wTSBw
wTSWw

has a maximum for Fisher’s linear discriminant

w ∝ S−1
W (m2 −m1)

Fisher’s linear discriminant is NOT a discriminant, but can
be used to construct one by choosing a threshold y0 in the
projection space.



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Classification

Generalised Linear
Model

Inference and Decision

Decision Theory

Fisher’s Linear
Discriminant

The Perceptron
Algorithm

Probabilistic Generative
Models

Discrete Features

Logistic Regression

Feature Space

100of 183

The Perceptron Algorithm

Perceptron ("MARK 1", Cornell Univ., 1960) was the first
computer which could learn new skills by trial and error
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The Perceptron Algorithm

Frank Rosenblatt (1928 - 1969)
"Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms" (Spartan Books, 1962)
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The Perceptron Algorithm

Two class model
Create feature vector φ(x) by a fixed nonlinear
transformation of the input x.
Generalised linear model

y(x) = f (wTφ(x))

with φ(x) containing some bias element φ0(x) = 1.
nonlinear activation function

f (a) =

{
+1, a ≥ 0
−1, a < 0

Target coding for perceptron

t =

{
+1, if C1

−1, if C2
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The Perceptron Algorithm - Error Function

Idea : Minimise total number of misclassified patterns.
Problem : As a function of w, this is piecewise constant
and therefore the gradient is zero almost everywhere.
Better idea: Using the (−1,+1) target coding scheme, we
want all patterns to satisfy wTφ(xn)tn > 0.
Perceptron Criterion : Add the errors for all patterns
belonging to the set of misclassified patternsM

EP(w) = −
∑

n∈M
wTφ(xn)tn
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Perceptron - Stochastic Gradient Descent

Perceptron Criterion (with notation φn = φ(xn) )

EP(w) = −
∑

n∈M
wTφntn

One iteration at step τ
1 Choose a training pair (xn, tn)
2 Update the weight vector w by

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφntn

As y(x,w) does not depend on the norm of w, one can set
η = 1

w(τ+1) = w(τ) + φntn
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The Perceptron Algorithm - Update 1

Update of the perceptron weights from a misclassified pattern
(green)

w(τ+1) = w(τ) + φntn
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The Perceptron Algorithm - Update 2

Update of the perceptron weights from a misclassified pattern
(green)

w(τ+1) = w(τ) + φntn
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The Perceptron Algorithm - Convergence

Does the algorithm converge ?
For a single update step

−w(τ+1)Tφntn = −w(τ)Tφntn − (φntn)Tφntn < −w(τ)Tφntn

because (φntn)Tφntn = ‖φntn‖ > 0.
BUT: contributions to the error from the other misclassified
patterns might have increased.
AND: some correctly classified patterns might now be
misclassified.
Perceptron Convergence Theorem : If the training set is
linearly separable, the perceptron algorithm is guaranteed
to find a solution in a finite number of steps.
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Three Models for Decision Problems

In increasing order of complexity
Find a discriminant function f (x) which maps each input
directly onto a class label.
Discriminative Models

1 Solve the inference problem of determining the posterior
class probabilities p(Ck | x).

2 Use decision theory to assign each new x to one of the
classes.

Generative Models
1 Solve the inference problem of determining the

class-conditional probabilities p(x | Ck).
2 Also, infer the prior class probabilities p(Ck).
3 Use Bayes’ theorem to find the posterior p(Ck | x).
4 Alternatively, model the joint distribution p(x, Ck) directly.
5 Use decision theory to assign each new x to one of the

classes.
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Probabilistic Generative Models

Generative approach: model class-conditional densities
p(x | Ck) and priors p(Ck) to calculate the posterior
probability for class C1

p(C1 | x) =
p(x | C1)p(C1)

p(x | C1)p(C1) + p(x | C2)p(C2)

=
1

1 + exp(−a(x))
= σ(a(x))

where a and the logistic sigmoid function σ(a) are given by

a(x) = ln
p(x | C1) p(C1)

p(x | C2) p(C2)
= ln

p(x, C1)

p(x, C2)

σ(a) =
1

1 + exp(−a)
.
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Logistic Sigmoid

The logistic sigmoid function σ(a) = 1
1+exp(−a)

"squashing function’ because it maps the real axis into a
finite interval (0, 1)

σ(−a) = 1− σ(a)

Derivative d
daσ(a) = σ(a)σ(−a) = σ(a) (1− σ(a))

Inverse is called logit function a(σ) = ln
(

σ
1−σ

)
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Probabilistic Generative Models - Multiclass

The normalised exponential is given by

p(Ck | x) =
p(x | Ck) p(Ck)∑

j p(x | Cj) p(Cj)
=

exp(ak)∑
j exp(aj)

where
ak = ln(p(x | Ck) p(Ck)).

Also called softmax function as it is a smoothed version of
the max function.
Example: If ak � aj for all j 6= k, then p(Ck | x) ' 1, and
p(Cj | x) ' 0.



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Classification

Generalised Linear
Model

Inference and Decision

Decision Theory

Fisher’s Linear
Discriminant

The Perceptron
Algorithm

Probabilistic Generative
Models

Discrete Features

Logistic Regression

Feature Space

112of 183

General Case - K Classes, Different Covariance

If each class-conditional probability is Gaussian and has a
different covariance, the quadratic terms − 1

2 xTΣ−1x do no
longer cancel each other out.
We get a quadratic discriminant.
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Discrete Features - Naive Bayes

Assume the input space consists of discrete features, in
the simplest case xi ∈ {0, 1}.
For a D-dimensional input space, a general distribution
would be represented by a table with 2D entries.
Together with the normalisation constraint, this are 2D − 1
independent variables.
Grows exponentially with the number of features.
The Naive Bayes assumption is that all features
conditioned on the class Ck are independent of each other.

p(x | Ck) =
D∏

i=1

µxi
ki
(1− µki)

1−xi
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Discrete Features - Naive Bayes

With the naive Bayes

p(x | Ck) =
D∏

i=1

µxi
ki
(1− µki)

1−xi

we can then again find the factors ak in the normalised
exponential

p(Ck | x) =
p(x | Ck)p(Ck)∑

j p(x | Cj)p(Cj)
=

exp(ak)∑
j exp(aj)

as a linear function of the xi

ak(x) =
D∑

i=1

{xi lnµki + (1− xi) ln(1− µki)}+ ln p(Ck).
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Three Models for Decision Problems

In increasing order of complexity
Find a discriminant function f (x) which maps each input
directly onto a class label.
Discriminative Models

1 Solve the inference problem of determining the posterior
class probabilities p(Ck | x).

2 Use decision theory to assign each new x to one of the
classes.

Generative Models
1 Solve the inference problem of determining the

class-conditional probabilities p(x | Ck).
2 Also, infer the prior class probabilities p(Ck).
3 Use Bayes’ theorem to find the posterior p(Ck | x).
4 Alternatively, model the joint distribution p(x, Ck) directly.
5 Use decision theory to assign each new x to one of the

classes.
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Logistic Regression is Classification

Two classes where the posterior of class C1 is a logistic
sigmoid σ() acting on a linear function of the feature vector
φ

p(C1 |φ) = y(φ) = σ(wTφ)

p(C2 |φ) = 1− p(C1 |φ)

Model dimension is equal to dimension of the feature
space M.
Compare this to fitting two Gaussians

2M︸︷︷︸
means

+ M(M + 1)/2︸ ︷︷ ︸
shared covariance

= M(M + 5)/2

For larger M, the logistic regression model has a clear
advantage.
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Logistic Regression is Classification

Determine the parameter via maximum likelihood for data
(φn, tn), n = 1, . . . ,N, where φn = φ(xn). The class
membership is coded as tn ∈ {0, 1}.
Likelihood function

p(t |w) =
N∏

n=1

ytn
n (1− yn)1−tn

where yn = p(C1 |φn).
Error function : negative log likelihood resulting in the
cross-entropy error function

E(w) = − ln p(t |w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}
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Logistic Regression is Classification

Error function (cross-entropy error )

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}

yn = p(C1 |φn) = σ(wTφn)

Gradient of the error function (using dσ
da = σ(1− σ) )

∇E(w) =
N∑

n=1

(yn − tn)φn

gradient does not contain any sigmoid function
for each data point error is product of deviation yn − tn and
basis function φn.
BUT : maximum likelihood solution can exhibit over-fitting
even for many data points; should use regularised error or
MAP then.
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Original Input versus Feature Space

Used direct input x until now.
All classification algorithms work also if we first apply a
fixed nonlinear transformation of the inputs using a vector
of basis functions φ(x).
Example: Use two Gaussian basis functions centered at
the green crosses in the input space.

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1
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Original Input versus Feature Space

Linear decision boundaries in the feature space
correspond to nonlinear decision boundaries in the input
space.
Classes which are NOT linearly separable in the input
space can become linearly separable in the feature space.
BUT: If classes overlap in input space, they will also
overlap in feature space.
Nonlinear features φ(x) can not remove the overlap; but
they may increase it !
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x2

−1 0 1

−1
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1

φ1
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0
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Part IV

Neural Networks
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Functional Transformations

As before, the biases can be absorbed into the weights by
introducing an extra input x0 = 1 and a hidden unit z0 = 1.

yk(x,w) = g

 M∑
j=0

w(2)
kj h

(
D∑

i=0

w(1)
ji xi

)
Compare to Generalised Linear Model

yk(x,w) = g

 M∑
j=0

w(2)
kj φj(x)



x0

x1

xD

z0

z1

zM

y1

yK

w
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KM

w
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hidden units
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Variable Basis Functions in a Neural Networks

φ(x) = σ(w0 + w1x1 + w2x2) for different parameter w.

-10

-5
x2

0

5

10
-10

-5

0
x1

5

10

w = (0, 1, 0.1)

-10

-5
x2

0

5

10
-10

-5

0
x1

5

10

w = (0,−0.5, 0.5)

-10

-5
x2

0

5

10
-10

-5

0
x1

5

10

w = (0, 0.1, 1)

-10

-5
x2

0

5

10
-10

-5

0
x1

5

10

w = (10,−0.5, 0.5)



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Neural Networks

Parameter Optimisation

124of 183

Aproximation Capabilities of Neural Networks

Neural network approximating

f (x) = x2

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (−1, 1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

Neural network approximating

f (x) = sin(x)

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (−1, 1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

Neural network approximating

f (x) = |x|

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (−1, 1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

Neural network approximating Heaviside function

f (x) =

{
1, x ≥ 0
0, x < 0

Two-layer network with 3 hidden units (tanh activation functions)
and linear outputs trained on 50 data points sampled from the
interval (−1, 1). Red: resulting output. Dashed: Output of the

hidden units.
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Aproximation Capabilities of Neural Networks

Neural network for two-class classification.
2 inputs, 2 hidden units with tanh activation function, 1
output with logistic sigmoid activation function.

−2 −1 0 1 2

−2

−1

0

1

2

3

Red: y = 0.5 decision boundary. Dashed blue: z = 0.5 hidden
unit contours. Green: Optimal decision boundary from the

known data distribution.
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Parameter Optimisation

Nonlinear mapping from input xn to output y(xn,w).
Sum-of-squares error function over all training data

E(w) =
1
2

N∑
n=1

‖y(xn,w)− tn‖2,

where we have N pairs of input vectors xn and target
vectors tn.
Find the parameter ŵ which minimises E(w)

ŵ = arg min
w

E(w)

by gradient descent.
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Error Backpropagation

Given current errors δk, the activation function h(·), its
derivative h′(·), and its output zi in the previous layer.
Error in the previous layer via the backpropagation formula

δj = h′(aj)
∑

k

wkjδk.

Components of the gradient ∇En are then ∂En(w)
∂wji

= δj zi.

zi

zj

δj
δk

δ1

wji wkj
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Efficieny of Error Backpropagation

As the number of weights is usually much larger than the
number of units (the network is well connected), the
complexity of calculating the gradient ∂En(w)

∂wji
via error

backpropagation is of O(W) where W is the number of
weights.
Compare this to numerical differentiation using

∂En(w)

∂wji
=

En(wji + ε)− En(wji)

ε
+ O(ε)

or the numerically more stable (fewer round-off errors)
symmetric differences

∂En(w)

∂wji
=

En(wji + ε)− En(wji − ε)
2ε

+ O(ε2)

which both need O(W2) operations.
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Regularisation in Neural Networks

Model complexity matters again.

M = 1

0 1

−1

0

1

M = 1

M = 3

0 1

−1

0

1

M = 3

M = 10

0 1

−1

0

1

M = 10

Examples of two-layer networks with M hidden units.
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Regularisation via Early Stopping

Stop training at the minimum of the validation set error.

0 10 20 30 40 50
0.15

0.2

0.25

Training set error.

0 10 20 30 40 50
0.35

0.4

0.45

Validation set error.
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Part V

Kernel Methods and SVM
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Kernel Methods

Keep (some) of the training data and recast prediction as a
linear combination of kernel functions which are evaluated
at the kept training data points and the new test point.
Let L(t, y(x) be any loss function
and J(f ) be any penalty quadratic in f ,

then minimum of penalised loss
∑N

n=1 L(tn, y(xn)) + λJ(f )

has form f (x) =
∑N

n=1 αn k(xn, x)

with α minimising
∑N

n=1 L(tn, (Kα)n) + λαTKα,
and Kernel Kij = Kji = k(xi, xj)

Kernel trick based on Mercer’s theorem: Any continuous,
symmetric, positive semi-definite kernel function k(x, y)
can be expressed as a dot product in a high-dimensional
(possibly infinite dimensional) space.
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Maximum Margin Classifiers

Support Vector Machines choose the decision boundary which
maximises the smallest distance to samples in both classes.

ŵ = arg max
w:‖w‖=1

min
n

[tn(wTφ(xn))] ∀ tn ∈ {−1, 1}

Linear boundary for φk(x) = x(k)

y = 1

y = 0

y = −1
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Maximum Margin Classifiers

Non-linear boundary for general φ(x).

ŵ =
N∑

n=1

αnφ(xn)

for a few αn 6= 0 and corresponding xn (support vectors).

f̂ (x) = ŵTφ(x) =
N∑

n=1

αn k(xn, x) with k(xn, x) = φ(xn)Tφ(x)
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Overlapping Class distributions

Introduce slack variable ξn ≥ 0 for each data point n .

ξn =


0, data point is correctly classified and

on margin boundary or beyond
|tn − y(x)|, otherwise

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Overlapping Class distributions

−2 0 2

−2

0

2

The ν-SVM algorithm using Gaussian kernels exp(−γ‖x− x′‖2)
with γ = 0.45 applied to a nonseparable data set in two
dimensions. Support vectors are indicated by circles.
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Part VI

Mixture Models and EM
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K-means Clustering

Goal: Partition N features xn into K clusters using
Euclidian distance d(xi, xj) = ‖xi − xj‖ such that each
feature belongs to the cluster with the nearest mean.
Distortion measure : J(µ, cl(xi)) =

∑N
n=1 d(xi,µcl(xi))

2

where cl(xi) is the index of the cluster centre closest to xi.
Start with K arbitrary cluster centres µk.
M-step: Minimise J w.r.t. cl(xi): Assign each data point xi

to closest cluster with index cl(xi).
E-step: Minimise J w.r.t. µk: Find new µk as the mean of
points belonging to cluster k.
Iteration over M/E-steps converges to local minimum of J.

(a)

−2 0 2

−2

0

2
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K-means Clustering - Example

(a)
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Mixture Models and EM

Mixture of Gaussians:
P(x |π,µ,Σ) =∑K

k=1 πkN (x |µk,Σk)

Maximise likelihood
P(x |π,µ,Σ) w.r.t. π,µ,Σ. -20 -15 -10 -5 0 5 10 15 20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-20 -15 -10 -5 0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M-step: Minimise J
w.r.t. cl(xi): Assign
each data point xi to
closest cluster with
index cl(xi).
E-step: Minimise J
w.r.t. µk: Find new
µk as the mean of
points belonging to
cluster k.
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EM for Gaussian Mixtures

Given a Gaussian mixture and data X, maximise the log
likelihood w.r.t. the parameters (π,µ,Σ).

1 Initialise the means µk, covariances µk and mixing
coefficients πk. Evaluate the log likelihood function.

2 E step : Evaluate the γ(zk) using the current parameters

γ(zk) =
πkN (x |µk,Σk)∑K
j=1 πjN (x |µj,Σj)

3 M step : Re-estimate the parameters using the current γ(zk)

µnew
k =

1
Nk

N∑
n=1

γ(znk) xn πnew
k =

Nk

N

Σnew
k =

1
Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T

4 Evaluate the log likelihood, if not converged then goto 2.

ln p(X |π,µ,Σ) =

N∑
n=1

ln

{
K∑

k=1

πnew
k N (x |µnew

k ,Σnew
k )

}
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Mixture of Bernoulli Distributions

Set of D binary variables xi, i = 1, . . . ,D.
Each governed by a Bernoulli distribution with parameter
µi. Therefore

p(x |µ) =
D∏

i=1

µxi
i (1− µi)

1−xi

Expecation and covariance

E [x] = µ

cov[x] = diag{µi(1− µi)}
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Mixture of Bernoulli Distributions

Mixture

p(x |µ,π) =
K∑

k=1

πk p(x |µk)

with

p(x |µk) =
D∏

i=1

µxi
ki(1− µki)

1−xi

Similar calculation as with mixture of Gaussian

γ(znk) =
πk p(xn |µk)∑K
j=1 πj p(xn |µj)

Nk =
N∑

n=1

γ(znk)

x̄ =
1

Nk

N∑
n=1

γ(znk)xn µk = x̄

πk =
Nk

N
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EM for Mixture of Bernoulli Distributions - Digits

Examples from a digits data set, each pixel taken only binary
values.

Parameters µki for each
component in the mixture.

Fit to one multivariate
Bernoulli distribution.
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The Role of Latent Variables

EM finds the maximum likelihod solution for models with
latent variables.
Two kinds of variables

Observed variables X
Latent variables Z

plus model parameters θ.
Log likelihood is then

ln p(X |θ) = ln

{∑
Z

p(X,Z |θ)

}

Optimisation problem due to the log-sum.
Assume maximisation of the distribution p(X,Z |θ) over
the complete data set {X,Z} is straightforward.
But we only have the incomplete data set {X} and the
posterior distribution p(Z |X,θ).
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EM - Key Idea

Key idea of EM: As Z is not observed, work with an
‘averaged’ version Q(θ,θold) of the complete log-likelihood
ln p(X,Z |θ), averaged over all states of Z.

Q(θ,θold) =
∑

Z

p(Z |X,θold) ln p(X,Z |θ)
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EM Algorithm

1 Choose an initial setting for the parameters θold.
2 E step Evaluate p(Z |X,θold).
3 M step Evaluate θnew given by

θnew = arg max
θ

Q(θ,θold)

where

Q(θ,θold) =
∑

Z

p(Z |X,θold) ln p(X,Z |θ)

4 Check for convergence of log likelihood or parameter
values. If not yet converged, then

θold = θnew

and go to step 2.
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EM Algorithm - Convergence

Start with the product rule for the observed variables x, the
unobserved variables Z, and the parameters θ

ln p(X,Z |θ) = ln p(Z |X,θ) + ln p(X |θ).

Apply
∑

Z q(Z) with arbitrary q(Z) to the formula∑
Z

q(Z) ln p(X,Z |θ) =
∑

Z

q(Z) ln p(Z |X,θ) + ln p(X |θ).

Rewrite as

ln p(X |θ) =
∑

Z

q(Z) ln
p(X,Z |θ)

q(Z)︸ ︷︷ ︸
L(q,θ)

−
∑

Z

q(Z) ln
p(Z |X,θ)

q(Z)︸ ︷︷ ︸
KL(q‖p)

KL(q‖p) is the Kullback-Leibler divergence.
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Kullback-Leibler Divergence

‘Distance’ between two distributions p(y) and q(y)

KL(q‖p) =
∑

y

q(y) ln
q(y)

p(y)
= −

∑
y

q(y) ln
p(y)

q(y)

KL(q‖p) =

∫
q(y) ln

q(y)

p(y)
dy = −

∫
q(y) ln

p(y)

q(y)
dy

KL(q‖p) ≥ 0
not symmetric: KL(q‖p) 6= KL(p‖q)

KL(q‖p) = 0 iff q = p.
invariant under parameter transformations
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EM Algorithm - Convergence

The two parts of ln p(X |θ)

ln p(X |θ) =
∑

Z

q(Z) ln
p(X,Z |θ)

q(Z)︸ ︷︷ ︸
L(q,θ)

−
∑

Z

q(Z) ln
p(Z |X,θ)

q(Z)︸ ︷︷ ︸
KL(q‖p)

ln p(X|θ)L(q, θ)

KL(q||p)
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EM Algorithm - E Step

Hold θold fixed. Maximise the lower bound L(q,θold) with
respect to q(·).
L(q,θold) is a functional.
ln p(X |θ) does NOT depend on q(·).
Maximum for L(q,θold) will occur when the
Kullback-Leibler divergence vanishes.
Therefore, choose q(Z) = p(Z |X,θold)

ln p(X |θ) =
∑

Z

q(Z) ln
p(X,Z |θ)

q(Z)︸ ︷︷ ︸
L(q,θ)

−
∑

Z

q(Z) ln
p(Z |X,θ)

q(Z)︸ ︷︷ ︸
KL(q‖p)

ln p(X|θold)L(q, θold)

KL(q||p) = 0
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EM Algorithm - M Step

Hold q(·) = p(Z |X,θold) fixed. Maximise the lower bound
L(q,θ) with respect to θ :
θnew = arg maxθ L(q,θold) = arg maxθ

∑
Z q(·) ln p(X,Z |θ)

L(q,θnew) > L(q,θold) unless maximum already reached.
As q(·) = p(Z |X,θold) is fixed, p(Z |X,θnew) will not be
equal to q(·), and therefore the Kullback-Leiber distance
will be greater than zero (unless converged).

ln p(X |θ) =
∑

Z

q(Z) ln
p(X,Z |θ)

q(Z)︸ ︷︷ ︸
L(q,θ)

−
∑

Z

q(Z) ln
p(Z |X,θ)

q(Z)︸ ︷︷ ︸
KL(q‖p)

ln p(X|θnew)L(q, θnew)

KL(q||p)
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EM Algorithm - Parameter View

θold θnew

L (q, θ)

ln p(X|θ)

Red curve : incomplete data likelihood.
Blue curve : After E step. Green curve : After M step.
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Part VII

Sampling
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Sampling from the Uniform Distribution

In a computer usually via pseudorandom number
generator : an algorithm generating a sequence of
numbers that approximates the properties of random
numbers.
Example : linear congruential generators

z(n+1) = (a z(n) + c) mod m

for modulus m > 0, multiplier 0 < a < m, increment
0 ≤ c < m, and seed z0.
Other classes of pseudorandom number generators:

Lagged Fibonacci generators
Linear feedback shift registers
Generalised feedback shift registers
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Example: RANDU Random Number Generator

Used since the 1960s on many machines
Defined by the recurrence

z(n+1) = (216 + 3) z(n) mod 231
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RANDU looks somehow ok?

Plotting
(
z(n+2), z(n+1), z(n)

)T
in 3D . . .
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RANDU not really ok

Plotting
(
z(n+2), z(n+1), z(n)

)T
in 3D . . . and changing the

viewpoint results in 15 planes.
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A Bad Generator - RANDU

Analyse the recurrence

z(n+1) = (216 + 3) z(n) mod 231

Assuming every equation to be modulo 231, we can
correlate three samples

z(n+2) = (216 + 3)2 z(n)

= (232 + 6 · 216 + 9)z(n)

= (6(216 + 3)− 9)z(n)

= 6z(n+1) − 9z(n)

Marsaglia, George "Random Numbers Fall Mainly In The
Planes", Proc National Academy of Sciences 61, 25-28,
1968.
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Sampling from Standard Distributions

Goal: Sample from p(y) which is given in analytical form.
Suppose uniformly distributed samples of z in the interval
(0, 1) are available.
Calculate the cumulative distribution function

h(y) =

∫ y

−∞
p(x) dx

Transform the samples from U(z | 0, 1) by

y = h−1(z)

to obtain samples y distributed according to p(y).
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Sampling from Standard Distributions

Goal: Sample from p(y) which is given in analytical form.
If a uniformly distributed random variable z is transformed
using y = h−1(z) then y will be distributed according to p(y).

p(y)

h(y)

y0

1
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Sampling from the Exponential Distribution

Goal: Sample from the exponential distribution

p(y) =

{
λe−λy 0 ≤ y
0 y < 0

with rate parameter λ > 0.
Suppose uniformly distributed samples of z in the interval
(0, 1) are available.
Calculate the cumulative distribution function

h(y) =

∫ y

−∞
p(x) dx =

∫ y

0
λe−λy dx = 1− e−λy

Transform the samples from U(z | 0, 1) by

y = h−1(z) = − 1
λ

ln(1− z)

to obtain samples y distributed according to the
exponential distribution.
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Sampling the Gaussian Distribution - Box-Muller

1 Generate pairs of uniformly distributed random numbers
z1, z2 ∈ (−1, 1) (e.g. zi = 2z− 1 for z from U(z | 0, 1))

2 Discard any pair (z1, z2) unless z2
1 + z2

2 ≤ 1. Results in a
uniform distribution inside of the unit circle p(z1, z2) = 1/π.

3 Evaluate r2 = z2
1 + z2

2 and

y1 = z1

(−2 ln r2

r2

)1/2

y2 = z2

(−2 ln r2

r2

)1/2

4 y1 and y2 are independent with joint distribution

p(y1, y2) = p(z1, z2)

∣∣∣∣ ∂(z1, z2)

∂(y1, y2)

∣∣∣∣ =
1√
2π

e−y2
1/2 1√

2π
e−y2

2/2
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Rejection Sampling

Assumption 1 : Sampling directly from p(z) is difficult, but
we can evaluate p(z) up to some unknown normalisation
constant Zp

p(z) =
1
Zp

p̃(z)

Assumption 2 : We can draw samples from a simpler
distribution q(z) and for some constant k and all z holds

kq(z) ≥ p̃(z)

z0 z

u0

kq(z0) kq(z)

p̃(z)
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Rejection Sampling

1 Generate a random number z0 from the distribution q(z).
2 Generate a number from the u0 from the uniform

distribution over [0, k q(z0)].
3 If u0 > p̃(z0) then reject the pair (z0, u0).
4 The remaining pairs have uniform distribution under the

curve p̃(z).
5 The z values are distributed according to p(z).

z0 z

u0

kq(z0) kq(z)

p̃(z)
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Importance Sampling

Provides a framework to directly calculate the expectation
Ep [f (z)] with respect to some distribution p(z).
Does NOT provide p(z).
Again use a proposal distribution q(z) and draw samples z
from it.
Then

E [f ] =

∫
f (z) p(z) dz =

∫
f (z)

p(z)
q(z)

q(z) dz ≈ 1
L

L∑
l=1

p(z(l))

q(z(l))
f (z(l))

p(z) f(z)

z

q(z)
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Importance Sampling - Unnormalised

Consider both p̃(z) and q̃(z) to be not normalised.

p(z) =
p̃(z)
Zp

q(z) =
q̃(z)
Zq

.

It follows then that

E [f ] ≈ Zq

Zp

1
L

L∑
l=1

r̃l f (z(l)) r̃l =
p̃(z(l))

q̃(z(l))
.

Use the same set of samples to calculate

Zp

Zq
≈ 1

L

L∑
l=1

r̃l,

resulting in the formula for unnormalised distributions

E [f ] ≈
L∑

l=1

wl f (z(l)) wl =
r̃l∑L

m=1 r̃m
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Importance Sampling - Key Points

Try to choose sample points in the input space where the
product f (z) p(z) is large.
Or at least where p(z) is large.
Importance weights rl correct the bias introduced by
sampling from the proposal distribution q(z) instead of the
wanted distribution p(z).
Success depends on how well q(z) approximates p(z).
If p(z) > 0 in same region, then q(z) > 0 necessary.
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Markov Chain Monte Carlo

Goal : Generate samples from the distribution p(z).
Idea : Build a machine which uses the current sample to
decide which next sample to produce in such a way that
the overall distribution of the samples will be p(z) .

1 Current sample z(r) is known. Generate a new sample z?

from a proposal distribution q(z | z(r)) we know how to
sample from.

2 Accept or reject the new sample according to some
appropriate criterion.

z(l+1) =

{
z? if accepted
z(r) if rejected

3 Proposal distribution depends on the current state.
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Metropolis Algorithm

1 Choose a symmetric proposal distribution
q(zA | zB) = q(zB | zA).

2 Accept the new sample z? with probability

A(z?, z(r)) = min
(

1,
p̃(z?)

p̃(z(r))

)
3 How? Choose a random number u with uniform

distribution in (0, 1). Accept new sample if A(z?, z(r)) > u.
4

z(l+1) =

{
z? if accepted
z(r) if rejected

Rejection of a point leads to inclusion of the previous sample.
(Different from rejection sampling.)
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Metropolis Algorithm - Illustration

Sampling from a Gaussian Distribution (black contour
shows one standard deviation).
Proposal distribution is isotropic Gaussian with standard
deviation 0.2.
150 candidates generated; 43 rejected.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

accepted steps, rejected steps.



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Sampling from the
Uniform Distribution

Sampling from Standard
Distributions

Rejection Sampling

Importance Sampling

Markov Chain Monte
Carlo - The Idea

175of 183

Markov Chain Monte Carlo - Metropolis-Hasting

Generalisation of the Metropolis algorithm for
nonsymmetric proposal distributions qk.
At step τ , draw a sample z? from the distribution qk(z | z(τ))
where k labels the set of possible transitions.
Accept with probability

A?k (z, z(τ)) = min
(

1,
p̃(z?) qk(z(τ) | z?)

p̃(z(τ)) qk(z? | z(τ))

)
Choice of proposal distribution critical.
Common choice : Gaussian centered on the current state.

small variance→ high acceptance rate, but slow walk
through the state space; samples not independent
large variance→ high rejection rate
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Part VIII

More Machine Learning
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More Machine Learning

Graphical Models
Gaussian Processes
Sequential Data
Sequential Decision Theory
Learning Agents
Reinforcement Learning
Theoretical Model Selection
Additive Models and Trees and Related Methods
Approximate (Variational) Inference
Boosting
Concept Learning
Computational Learning Theory
Genetic Algorithms
Learning Sets of Rules
Analytical Learning
. . .
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Part IX

Resources



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Journals

Books

Datasets

179of 183

Journals

Journal of Machine Learning Research
Machine Learning
IEEE Transactions on Pattern Analysis and Machine
Intelligence
IEEE Transactions on Neural Networks
Neural Computation
Neural Networks
Annals of Statistics
Journal of the American Statistical Association
SIAM Journal on Applied Mathematics (SIAP)
. . .
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Conferences

International Conference on Machine Learning (ICML)
European Conference on Machine Learning (ECML)
Neural Information Processing Systems (NIPS)
Algorithmic Learning Theory (ALT)
Computational Learning Theory (COLT)
Uncertainty in Artificial Intelligence (UAI)
International Joint Conference on Artificial Intelligence
(IJCAI)
International Conference on Artificial Neural Networks
(ICANN)
. . .
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Books

Pattern Recognition and
Machine Learning

Christopher M. Bishop

The Elements of Statistical
Learning

Trevor Hastie, Robert
Tibshirani, Jerome Friedman
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Books

Pattern Classification

Richard O. Duda, Peter E.
Hart, David G. Stork

Introduction to Machine
Learning

Ethem Alpaydin



Introduction to Statistical
Machine Learning

c©2010
Christfried Webers

NICTA
The Australian National

University

 MLSS
2010

Journals

Books

Datasets

183of 183

Datasets

UCI Repository
http://archive.ics.uci.edu/ml/

UCI Knowledge Discovery Database Archive
http://kdd.ics.uci.edu/summary.data.
application.html

Statlib
http://lib.stat.cmu.edu/

Delve
http://www.cs.utoronto.ca/~delve/

Time Series Database
http://robjhyndman.com/TSDL

http://archive.ics.uci.edu/ml/
http://kdd.ics.uci.edu/summary.data.application.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/~delve/
http://robjhyndman.com/TSDL

