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A generalisation of the Oja subspace flow

Christfried Webers and Jonathan H. Manton

Abstract— Recently, a novel flow for computing the eigen-
vectors associated with the smallest eigenvalues of a symmet-
ric but not necessarily positive definite matrix was introduced.
This meant that the eigenvectors associated with the smallest
eigenvalues could be found simply by reversing the sign of
the matrix. The current paper derives a cost function and
the corresponding negative gradient flow which converges to
the same subspace as is spanned by the minor components.
The flow is related to Oja’s major subspace flow which
converges for positive definite matrices. With a suitable
coordinate transformation, the Oja flow can be converted
into the corresponding novel minor subspace flow. But the
minor subspace flow does also converge for cases where no
transformation back into an Oja flow exists. Thus, the novel
flow is a generalisation of the Oja subspace flow.

Keywords— Algebraic and differential geometry, Eigenval-
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I. INTRODUCTION

In many areas of information processing, it is necessary

to extract the minor (major) components or the correspond-

ing minor (major) subspaces from a high dimensional input

data stream. The p minor (major) components of a matrix

C are the eigenvectors associated with the p smallest

(largest) eigenvalues of C. The minor (major) subspace

of dimension p of a matrix C is the subspace spanned by

the p minor (major) components of C.

Recently, a continuous time gradient flow for an indef-

inite real symmetric matrix C ∈ R
n×n was introduced in

[1]. The flow minimises the cost function fN : R
n×p → R,

fN (X) =
1
2

tr{XT CXN} +
1
4
µ‖N − XT X‖2

F (1)

where tr{·} denotes the trace of a matrix, ‖·‖F denotes the

Frobenius norm of a matrix, X ∈ R
n×p with n ≥ p, N ∈

R
p×p is a diagonal matrix with distinct positive eigenvalues

and µ ∈ R is a strictly positive constant different from the

eigenvalues of C. It was shown that for µ large enough,

the gradient flow of this cost function

Ẋ = −CX + µX(N − XT X) (2)

converges to the minor components of C.

It was also shown in [1], that the introduction of the

diagonal matrix N in the penalty term of (1) is essential for

the flow to converge to the minor components. Replacing

N in the penalty term with the identity matrix, there exist
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minima X of the cost function (1) for which the columns

of X are not the minor components of C.

Another flow not converging to the eigenvectors but

only to a set of orthonormal vectors spanning the major

subspace is Oja’s principal subspace flow [2], [3]. It is

defined as

Ż = (I − ZZT )AZ (3)

where Z ∈ R
n×p, n ≥ p, I denotes the identity matrix and

A ∈ R
n×n is a symmetric and positive definite matrix. The

convergence of the Oja flow was proven in [4] which also

developed a phase portrait analysis for the flow. If A < 0,

the Oja flow computes the minor subspace but diverges.

The main result of this paper is the analysis of the novel

cost function

f(X) =
1
2

tr{XT CX} + µ
1
4
‖I − XT X‖2

F (4)

which is derived from (1) by replacing N with the identity

matrix. The minimisation of this novel cost function leads

to a matrix X with columns spanning the minor subspace

of C.

Associated with the cost function f(X) is the negative

gradient flow Ẋ = − grad f(X) given by

Ẋ = −CX + µX(I − XT X) (5)

where the gradient is taken with respect to the Euclidian

inner product 〈A,B〉 = tr{BT A} on matrix space. The

flow (5) generically converges to a minimum of the cost

function f(X).
It will be further shown that the novel flow is a generali-

sation of the Oja flow to indefinite matrices. With a suitable

coordinate transformation, the Oja flow can be transformed

into the flow (5). But there exist matrices C in (5) for

which the inverse transformation is not defined. Hence,

(5) is a strict generalisation of the Oja flow.

Finally, in a numerical experiment the convergence

speed of the novel flow (5) will be compared to the flow

(2).

II. COST FUNCTION

A. Properties of the cost function

The cost function (4) can be obtained from (1) by replac-

ing N with the identity matrix. This change introduces an

important symmetry into the cost function f(X) expressed

in the following lemma. This symmetry means that the

analysis given in [1] does not carry over.

Lemma 1: Given an arbitrary orthogonal matrix V ∈
R

p×p, the following equation holds

f(X) = f(XV ) (6)
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One consequence of this symmetry property of the

cost function f(X) is that in general minima of the cost

function are not isolated points but manifolds. 1 This can be

easily seen as for any minimum X and arbitrary orthogonal

matrix V , all points of the connected set XV are also

minima for which the cost function has the same value.

This complicates the convergence analysis of the flow.

Additionally to the convergence to the critical manifold,

it will also be conjectured, that the flow converges to one

point on the manifold.

The next lemma establishes the existence of a lower

bound and bounded sublevel sets for the cost function.

Lemma 2: The cost function f(X) of (4) is lower

bounded and, for any constant c ∈ R and µ being strictly

positive its sublevel set {X : f(X) ≤ c} is bounded.

Proof: The cost function f(X) can be written as

f(X) =
1
2

tr{XT CX}+µ
1
4

tr{I−2XT X+XT XXT X}
(7)

and for large X the dominant contribution comes from the

fourth order XT XXT X term which is positive semidefi-

nite and its trace has compact sublevel sets.

The following section analyses the form of critical points

for the cost function f(X).

B. Critical points

The following assumptions are made throughout.

A1. The scalar µ is strictly positive.

A2. The matrix C ∈ R
n×n is symmetric and has distinct

eigenvalues.

A3. The scalar µ does not equal any eigenvalue of C.

The critical points of the cost function f(X) are the

points for which the directional derivative of f(X) van-

ishes in all directions. The directional derivative in the

direction ξ ∈ R
n×p is

Df(X)ξ = tr{ξT (CX + µXXT X − µX)} (8)

For a point X to be a critical point of f(X) it must satisfy

the following equation

CX = µX(I − XT X) (9)

The following theorem establishes the basis for further

analysis.

Proposition 1 (Critical Points): A necessary and suffi-

cient condition for X =
[

x1 x2 · · · xp

]
to be a

critical point of (4) is that X has the form X = QV for

arbitrary orthogonal matrices V ∈ R
p×p and for each of

the columns qr, r = 1, . . . , p of Q there are two choices.

(1) qr is either the null vector, or

(2) qr is an eigenvector of C with corresponding eigen-

value λr and ‖qr‖2 = 1 − λr/µ.

All nonzero vectors qr are pairwise orthogonal to each

other.

1We conjecture the minima are manifolds.

Proof: The singular value decomposition of any point

X ∈ R
n×p is

X = U

[
Σ
0

]
V T (10)

where U ∈ R
n×n and V ∈ R

p×p are orthonormal matrices

and the matrix Σ ∈ R
p×p is diagonal with singular values

σr ≥ 0. Note, that with this definition no particular

ordering of the singular values σr is assumed.

Inserting (10) into (9) one gets

CU

[
Σ
0

]
V T = µU

[
Σ
0

]
V T (Ip − V ΣUT UΣT V T ) (11)

This can be simplified to

CU

[
Σ
0

]
= µU

[
Σ
0

]
(Ip − Σ2) (12)

with Σ2 = diag{σ2
1 ,. . . , σ2

p} ∈ R
p×p. Writing (12) for

each of the first p columns of U leads to p equations of

the form

Curσr = µurσr(1 − σ2
r) (13)

With the definition qr = urσr this can be written as

Cqr = µqr(1 − σ2
r) (14)

Now, either σr = 0 in which case qr = 0. Or σr �= 0 in

which case qr is an eigenvector of C with corresponding

eigenvalue λr = µ(1 − σ2
r). The squared norm of the

eigenvector qr is ‖qr‖2 = σ2
r = 1 − λr/µ. The pairwise

orthogonality of nonzero vectors qr follows from the

definition qr = urσr and the fact that the ur are columns

of an orthogonal matrix U .

III. LOCAL STABILITY OF CRITICAL POINTS

It follows from Proposition 1 that if X is a critical point

of (4) then there exist orthogonal matrices U ∈ R
n×n,

V ∈ R
p×p and a diagonal matrix Σ ∈ R

p×p such that X =

U

[
Σ
0

]
V T . Furthermore, each of the columns ur, r = p+

1,. . . , n of U and all ur, r = 1,. . . , p for which σr = 0 can

be freely chosen as they do not contribute anything to the

value of X . One special choice simplifying further analysis

will be to fill the columns with unit norm eigenvectors of

C not already associated with nonzero σr, r = 1,. . . , p.

This is always possible as C was assumed to have distinct

eigenvalues. With this choice for U , Λ = UT CU will

be a diagonal matrix cointaining the eigenvalues of C in

an arbitrary order. The singular values in a singular value

decomposition are all nonnegative, and hence, each of the

values σr can take at most two different values; either

σr = 0 or σr =
√

1 − λr/µ.

The stability of the critical points can now be determined

by directly inspecting the eigenvalues of the Hessian at the

critical points.

Lemma 3: (Hessian of f(X)) Let X be a critical point

of the cost function f(X) defined in (9). Let the unitary

matrix U and real diagonal matrix Σ be such that Λ =



Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

r s σr = 0 σr =
p

1 − λr/µ
αr 1 . . . p λr − µ 2(µ − λr)
βsr 1 . . . p p + 1 . . . n λs − µ λs − λr

TABLE I

αr AND βsr AT A CRITICAL POINT X

UT CU and X = U

[
Σ
0

]
V T ; such U , V and Σ always

exists. Then, the second directional derivative g(ξ) =
D2f(X)ξ in the direction ξ at the point X is given by

the quadratic form

g(UξV T ) =
p∑

r=1

αrξ
2
rr +

n∑
s=p+1

p∑
r=1

βsrξ
2
sr

+
p−1∑
r=1

p∑
s=r+1

[ξrs ξsr] Γ(rs) [ξrs ξsr]
T

(15)

where the scalars αr, βsr ∈ R are

αr = λr − µ + 3µσ2
r (16)

βsr = λs − µ + µσ2
r (17)

and the matrix Γ(rs) ∈ R
2×2 is

Γ(rs) =
[
λr − µ + µ(σ2

r + σ2
s) µσrσs

µσrσs λs − µ + µ(σ2
r + σ2

s)

]

(18)

Proof: The second directional derivative of f(X) is

the term quadratic in h when expanding the cost function

f(X + hξ)

D2f(X)ξ = tr{ξT (Cξ − µξ(I − XT X)

+ µXξT X + µXXT ξ)}. (19)

For a given critical point X , define g(ξ) to be this

quadratic form. By Proposition 1, there exists orthogonal

matrices U and V and a diagonal matrix Σ such that

UT CU = Λ or C = UΛUT and X = U

[
Σ
0

]
V T . Thus

g(UξV T ) = tr{ξT Λξ − µξT ξ(I − Σ2)

+ µξT

[
Σ
0

]
[ Σ 0 ] ξ + µξT

[
Σ
0

]
ξT

[
Σ
0

]
}

=
n∑

s=1

p∑
r=1

(λs − µ(1 − σ2
r))ξ2

rs

+ µ

p∑
r=1

p∑
s=1

(σ2
rξ2

rs + σrσsξrsξsr)

=
p∑

r=1

αrξ
2
rr +

n∑
s=p+1

p∑
r=1

βsrξ
2
sr

+
p−1∑
r=1

p∑
s=r+1

[ξrs ξsr] Γ(rs) [ξrs ξsr]
T

(20)

where the αr, βsr and Γ(rs) are as given in the lemma.

σr = 0 σr > 0
σs = 0 σs > 0 σs = 0 σs > 0

e1

e2

λr − µ
λs − µ

0
λr − λs

0
λs − λr

0
2µ − λr − λs

TABLE II

EIGENVALUES E = diag{e1, e2} OF Γ(rs)V = V E FOR

r = 1 . . . p − 1 AND s = r + 1 . . . p AT A CRITICAL POINT X

The minima of the cost function f(X) are the critical

points for which the eigenvalues of the Hessian are non-

negative. Each of the singular values σr, r = 1,. . . , p can

be either σr = 0 or, provided µ > λr, σ2
r = 1 − λr/µ.

Tables I and II show these eigenvalues for all possible

choices of σr. The eigenvalues of the Hessian are used to

establish the form of X at a local minimum.

Proposition 2 (Local minima): Let λ1 < . . . < λn

be the eigenvalues of C in ascending order and let

u1, . . . , un be the corresponding eigenvectors. Then X =[
q1 q2 · · · qp

]
V T is a local minimum of f(X) for

an arbitrary orthogonal matrix V ∈ R
p×p if and only if

qr = ±γrur for all r = 1,. . . , p with γr =
√

1 − λr/µ
for λr < µ and γr = 0 otherwise.

Proof: First, assume all σr > 0. For the eigenvalues

of αr to be positive, this necessitates µ > λr for r =
1,. . . , p. Now, for βsr to be positive λs > λr for all

r = 1,. . . , p and s = p + 1,. . . , n. Finally, one of the

eigenvalues of Γ(rs) is zero indicating that the minima

are not isolated points. The other eigenvalue for Γ(rs) is

always positive because the above condition on αr implies

µ > λr, for r = 1,. . . , p and therefore 2µ − λr − λs > 0
for r, s = 1,. . . , p.

Now assume that one singular value is zero. Let k be

the smallest integer such that σk = 0. Then λk > µ in

order to satisfy αk > 0. From βsk > 0 follows λs > µ,

s = p + 1,. . . , n. Now from Γ(ks) ≥ 0, s = k + 1,. . . , p
there are two cases. Either σs = 0 and therefore λk > µ
and λs > µ or σs �= 0. In the latter case, one eigenvalue

is zero and from the other λk > λs is concluded. This

means, all eigenvalues associated with σr �= 0 have to

be smaller than the eigenvalues of eigenvectors associated

with σr = 0. This means, the eigenvectors qr for which the

corresponding eigenvalues λr < µ are the eigenvectors as-

sociated with the smallest eigenvalues of C. Now observe,

that the eigenvectors qr can be sorted in ascending order

by multiplying from right with a permutation matrix Π. As

Π is an orthogonal matrix and orthogonal matrices form a

group. Thus, ΠV T is another orthogonal matrix.

IV. MINOR SUBSPACE FLOW

It was shown that the critical points of the cost func-

tion f(X) are not isolated but sets. In the following, a

conjecture about the convergence of the flow to the minor

subspace and an overview of the proof is given. First, a

definition for a minor subspace flow is proposed.

Definition 1 (Minor subspace flow): The flow Ẋ =
f(X, C) on R

n×p is a minor subspace flow for matrices
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C belonging to the class C ⊂ R
n×n if the following hold:

(1) For any initial condition X0 and any C ∈ C, a solution

X(t) of the flow Ẋ = f(X, C) satisfying X(0) = X0

exists and is unique for all t ≥ 0.

(2) The limit X∞ = limt→∞ X(t) always exists.

(3) If X0 is a generic initial condition, then the p columns

of X∞ span the same subspace as the subspace

spanned by the eigenvectors associated with the p
smallest eigenvalues of C, counting multiplicities.

With these definition, the convergence for the minor sub-

space flow (5) can now be conjectured.

Conjecture 1 (Minor subspace flow): For arbitrary in-

tegers 1 ≤ p ≤ n, let µ > 0 and define Cµ to be the

set of all symmetric matrices in R
n×n whose eigenvalues

are distinct, are not equal to µ and at least p of them are

less than µ. Then, the flow (5) is a minor subspace flow

for C ∈ Cµ.

In order to proof the conjecture, one has to show that f(X)
is a Morse-Bott function which implies the following.

Definition 2: [5] Let M be a smooth manifold and let

Φ : M → R be a smooth function. Let C(Φ) ⊂ M denote

the set of all critical points of Φ. Then Φ is called a Morse-
Bott function provided the following three conditions are

satisfied.

1) Φ : M → R has compact sublevel sets.

2) C(Φ) =
⋃k

j=1 Nj with Nj disjoint, closed and

connected submanifolds of M such that Φ is constant

on Nj , j = 1, . . . , k.

3) ker(HΦ(x)) = TxNj ,∀x ∈ Nj , j = 1, . . . , k.

The following section will relate this minor subspace

flow to Oja’s major subspace flow.

V. RELATION TO THE OJA MAJOR SUBSPACE FLOW

This section will show that the novel flow is a general-

isation of the Oja flow.

Theorem 1: Consider the Oja flow (3). As A is positive

definite, the linear coordinate transformation

X = λ−1/2A1/2Z (21)

is defined for all Z,X ∈ R
n×p if λ > 0. With this

transformation the Oja flow (3) becomes

Ẋ = (A − λI)X + λX(I − XT X) (22)

which is the minor subspace flow (5) with C = λI − A
and µ = λ.

Proof: Differentiate (21) and insert (3) for Ż to get

Ẋ = λ−1/2A1/2Ż (23)

= AX − λXXT X (24)

= (A − λI)X + λX(I − XT X). (25)

Hence, the transformation from the Oja flow (3) to the flow

(5) is always valid.

Now consider the inverse transformation from the flow

(5) to the Oja flow (3) given by

Z = λ1/2A−1/2X (26)

If µ is chosen larger than then pth smallest eigenvalue of

C but smaller than the largest eigenvalue of C, the minor

subspace flow converges. The matrix A defined via the

inverse transformation of (21)

A = µI − C µ = λ (27)

is not positive definite. Therefore, A−1/2 in (26) is not

defined and the corresponding Oja flow does not exist. In

this respect, the subspace flow (5) is a generalisation of

the Oja subspace flow (3).

However, the novel flow does not converge to orthogonal

columns as the Oja flow does. This can be seen by

applying the linear transformation (21) to the limit point

Z∞ observing that ZT
∞Z∞ = I is valid.

I = ZT
∞Z∞ = µXT

∞A−1X∞ (28)

If orthogonal vectors spanning the minor subspace are

needed, an extra step orthogonalising the colums of X∞
will be necessary.

VI. RELATION BETWEEN NOVEL MINOR AND MAJOR

SUBSPACE FLOW

The minor subspace flow (5) can be directly turned into

a major subspace flow by reversing the sign of the matrix

C. This can be seen in the following way. First note, that

the matrices C and −C share the same set of unit norm

eigenvectors ur, r = 1, . . . , p as

CU = UΛ (29)

(−C)U = U(−Λ) (30)

where Λ is the diagonal matrix of eigenvalues and U =[
u1 u2 · · · un

]
. Note, that the unit norm eigenvec-

tors are uniquely defined (apart from a sign) because the

matrix C is assumed to have distinct eigenvalues. Now,

the p smallest eigenvalues of Λ correspond to the p largest

eigenvalues of −Λ and vice versa.

Hence, the flow

Ẋ = CX + µX(I − XT X) (31)

is a major subspace flow for the matrix C. It converges, if

and only if µ > 0 and µ is greater than at least p of the

eigenvalues of −C.

VII. NUMERICAL EXAMPLES

A. Angle between subspaces

In order to quantify the convergence of the numerical

examples, a measure for the similarity of two subspaces of

R
n spanned by the columns of two matrices A ∈ R

n×r and

B ∈ R
n×s is needed. One possible measure is based on

the concept of principal angles recursively defined between

subspaces ([6], [7]). Refinements introduced in [8] ensure

that also small angles are calculated accurately. 2 If both

matrices A and B have the same number of columns, the

angle can be computed in the following way:

2Note that the Matlab command subspace prior to release 13 does not
provide the accurate answers for small angles.
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Fig. 1. Comparison of convergence rate between the novel subspace
flow (5) and the minor component flow (2) (n = 20, p = 6)

1. Find orthonormal bases QA and QB for the subspaces

spanned by the columns of A and B employing the

QR factorisation of the matrices.

2. Calculate the angle θ = arcsin(‖QT
A−(QT

AQB)QT
B‖)

In all subsequent experiments, the angle will be measured

between the subspace generated from the discretisation of

the flow and the subspace generated by the minor (major)

components calculated with the Matlab command eig.

B. Iteration setup

The goal is to find an approximation to the solution of

the flow for a given cost function f(x) given an initial

value X0 ∈ R
n×p by discretising the corresponding flow.

Given an approximation Xk at step k, the next iteration is

calculated as

Xk+1 = Xk + α∗Dk (32)

where Dk is the search direction and α∗ is the positive

step size minimising h(α) = f(X + αDk). As the cost

functions used here are of order four, minimisation of h(α)
can be done by explicitely solving a third order scalar

equation in α resulting in one or three real solutions for the

optimal step size α∗. For the search direction, the steepest

descent (SD) with

Dk = −Gk (33)

or the Polak-Ribiere conjugate gradient (PRCG) with

Dk = −Gk +
< Gk − Gk−1, Gk >

< Gk−1, Gk−1 >
(34)

is employed [9]. Here, Gk is the gradient of the cost

function for the iterate Xk.

C. Comparison between minor subspace and minor com-
ponent flow

The minor subspace flow provides a faster convergence

rate then the minor component flow as shown in Figure

1. This is an advantage for applications, where the mi-

nor components are not needed because a set of vectors

spanning the minor subspace is sufficient. This increase

in convergence speed can be explained with the minor

subspace flow having less constraints to obey than the

minor component flow where the order of the eigenvectors

is specified by the order of the corresponding eigenvalues

of the diagonal matrix N .

VIII. CONCLUSION

This paper introduced a novel minor subspace flow

which is defined for indefinite symmetric matrices. A close

relation to Oja’s major subspace flow exists because all

Oja flows can be converted to a corresponding novel flow.

Moreover, the novel flow converges also for matrices which

can not be related to an Oja flow. A numerical experiment

illustrated the convegence of the novel flow.
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